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The theory of classically integrable nonlinear wave
equations and the Bethe ansatz systems describing
massive quantum field theories defined on an infinite
cylinder are related by an important mathematical
correspondence that still lacks a satisfactory physical
interpretation. In this paper, we shall extend this link
to the case of the classical and quantum versions of the
Tzitzéica–Bullough–Dodd model.

1. Introduction
An interesting correspondence was discovered in Dorey &
Tateo [1] between the functional approach to the
spectral theory of ordinary differential equations, mainly
developed by Sibuya, Voros and co-workers [2,3], and a
series of works by Bazhanov et al. [4–6], where earlier
results of Baxter [7–9] were extended to the conformal
field theories (CFTs) governing the continuum limits of
certain integrable models (IMs) on a two-dimensional
lattice.

It turns out that the initial observation of Dorey &
Tateo [1] was the first hint of a very general mathematical
scheme—an ‘ODE/IM correspondence’— involving wide
classes of multi-parameter ordinary differential equations.
Their generalized eigenvalue problems turn out to be
constrained by the same Bethe ansatz equations (BAEs)
as arise in the CFT limits of certain integrable vertex
models, related to Lie algebras [10–16].
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A precise relationship between elements of this new scheme and the PT -symmetric quantum
mechanical models of Bender and co-workers [17,18] was established in Dorey & Tateo [19]. This
has led to proofs of spectral reality in certain cases [20], which were further generalized in Shin
[21], and insights into the loss of reality in others [22]. Applications of the correspondence are also
being found in various problems arising in condensed matter physics [23–25].

A generalization of this correspondence to off-critical, or massive, quantum field theories
(QFTs) was subsequently obtained by Gaiotto et al. [26] following a different chain of discoveries,
relating to string and gauge theories. As a net outcome of a surprising series of mathematical
connections, also bringing in the anti-de Sitter (AdS)/CFT correspondence, gluon scattering
amplitudes in N = 4 super Yang–Mills can now be studied using powerful tools from the theory
of IMs [27].

A further important step for the understanding of the relationship between the AdS/CFT-
related results and the original formulation of the ODE/IM correspondence was made by
Lukyanov & Zamolodchikov [28]. They showed how to link the classical sinh-Gordon equation
to the quantum massive sine(h)-Gordon model, generalizing the earlier works on the ODE/IM
correspondence. In doing this, they brought into play all the formalism developed in more than
50 years of soliton theory and the study of exactly solvable nonlinear partial differential equations
(of which sinh-Gordon is an exemplar), in particular the role played by the association between a
nonlinear classical field theory and certain sets of linear differential equations.

In this paper, we shall discuss another example of an off-critical generalization of the ODE/IM
correspondence, which will be built starting from the definition of a particular model on the
classical side. This model is often referred to as the Bullough–Dodd (BD) model [29], though
the special properties of the corresponding partial differential equation were noticed as long
ago as 1907, by Tzitzeica [30]. Like the sinh-Gordon model, it is an example of an affine Toda
field theory, or two-dimensional Toda chain, as will be explained in §2. The quantum version
of the BD model, also known as the Izergin–Korepin model [31], plays an important role in the
framework of massive two-dimensional QFTs corresponding to integrable perturbations of the
minimal series of CFTs [32]. Together with its purely imaginary coupling version, it has been
directly studied using the exact S-matrix approach [33]. It is also related to the scaling limit of
important statistical–mechanical systems such as the q-state Potts models [34] and the dilute An

models [35].
The analysis in this paper follows the steps taken previously [13,28]. Some further details of

the BD model and the ODE/IM correspondence can be found in Faldella [36], whereas a more
comprehensive presentation encompassing the extension to other affine Toda field theories will
be the subject of a forthcoming publication.

2. The Bullough–Dodd model
The one-dimensional Toda chain is defined as

∂2
t η

k = 2 e(2η
k+1−2ηk) − 2 e(2η

k−2ηk−1), (2.1)

where k enumerates and labels the fields. This definition can be simply modified to yield the
(1 + 1)-dimensional variant of (2.1) [37],

∂2
t η

k − ∂2
xη

k = 2 e(2η
k+1−2ηk) − 2 e(2η

k−2ηk−1). (2.2)

Varying the periodicity conditions and symmetries of the fields ηk, the system (2.2) leads to a
whole family of nonlinear equations that are solvable by means of the inverse scattering transform
[38]. This involves an associated linear system, which has to reproduce the nonlinear chain
through a compatibility condition. It turns out that the correct choice for (2.2) is [37]

XΨ ≡ (∂t + V − iλC1 − iλ−1C2)Ψ = 0

and TΨ ≡ (∂x + W + iλC1 − iλ−1C2)Ψ = 0,

⎫⎬⎭ (2.3)
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where λ is the spectral parameter,

Vij = ∂tηiδij; Wij = ∂xηiδij; C1ij = C2ji = Cjδi−1,j

and Ci = e(η
i+1−ηi),

⎫⎬⎭ (2.4)

and δij is the Kronecker symbol which, in a case of a closed chain consisting of N elements, is
defined as

δij =
{

1, when i ≡ j mod N;

0, in all other cases.
(2.5)

It is also possible to give a Lagrangian formulation for the system (2.2),

L=
N∑

k=1

(
1
2
∂μη

k∂μηk − e(2η
k−2ηk−1) + 1

)
(2.6)

with μ ∈ (t, x). Then, it is straightforward to verify that

∂μ
∂L

∂(∂μηk)
− ∂L
∂ηk

= 0 �⇒ ∂2
t η

k − ∂2
xη

k = 2 e(2η
k+1−2ηk) − 2 e(2η

k−2ηk−1).

Typically, the further condition
∑

k η
k = 0 is imposed on the fields,1 which results in the affine

Toda field theory based on the a(1)N−1 affine Dynkin diagram. For N = 2, with η1 = −η2 = η, the
equations then reduce to

ηtt − ηxx + 4 sinh(2η)= 0 (the sinh-Gordon equation). (2.7)

For N = 3, and with η3 = −η1 − η2,

η1
tt − η1

xx + 2 e(2η
1−2η2) − 2 e(−4η1−2η2) = 0

and η2
tt − η2

xx + 2 e(4η
1+2η2) − 2 e(2 η

1−2 η2) = 0,

⎫⎬⎭ (2.8)

which are the equations of motion for the a(1)2 affine Toda field theory. The Z2 symmetry of the
a(1)2 affine Dynkin diagram allows a further symmetry to be imposed, namely η1 = −η2 = η. Then,
(2.8) becomes

ηtt − ηxx + 2 e4η − 2 e−2η = 0 (the BD equation). (2.9)

Equation (2.9) can also be recovered directly from the compatibility of 3 × 3 matrix operators
that are defined as [37]

T = ∂x +

⎛⎜⎝ ηt −iλ−1e−η iλ e2η

iλ e−η 0 −iλ−1e−η
−iλ−1e2η iλ e−η −ηt

⎞⎟⎠ (2.10)

and

X = ∂t +

⎛⎜⎝ ηx iλ−1e−η iλ e2η

iλ e−η 0 iλ−1e−η
iλ−1e2η iλ e−η −ηx

⎞⎟⎠. (2.11)

If we were to introduce light-cone coordinates as

z = x + t; z̄ = x − t, (2.12)

and redefine η→ η/2, (2.9) would become

∂z∂z̄η(z, z̄)+ e−η(z,z̄) − e2η(z,z̄) = 0. (2.13)

1This condition has the effect of excluding a zero mode in the ‘mass spectrum’ of the theory:

m2
n = 4 sin2

(πn
N

)
, n = 0, 1, . . . , N − 1.
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The nonlinear equation (2.13) is the starting point for the construction of objects which are in
correspondence with the quantum world. However, it is important to stress that, for this purpose,
the coordinates z and z̄ should be considered as living in an ‘auxillary space’, which is not the
same as the space on which the QFT under discussion will be defined. In fact, it will be better to
adopt a Euclidean metric on this auxillary space so that z and z̄ are complex conjugates of each
other, though this will often be relaxed and z and z̄ regarded as independent complex variables.
To pave the way for the correspondence, it is also convenient to adopt a modified version of (2.13).
This will be referred to as the modified Bullough–Dodd (mBD) equation and is

∂z∂z̄η + e−η(z,z̄) − p(z, s3M)p(z̄, s3M) e2η(z,z̄) = 0, (the mBD equation) (2.14)

where M> 0 and the function p(z, s3M) is defined to be

p(z, s3M)= z3M − s3M, (2.15)

and s will turn out to take the role of a scale parameter. Equations (2.13) and (2.14) are related by
a change of variables and a redefinition of the field, because, defining

w(z)=
∫ z√

p(z′)dz′ and w̄(z̄)=
∫ z̄ √

p(z̄′)dz̄′, (2.16)

and shifting the field as η→ η + 1
3 ln(p(z)p(z̄)), the mBD equation reduces to the BD equation. The

mBD model has, in general, no explicit rotational symmetry. Instead, it has a discrete symmetry
dictated by the form of the ‘potential’ function p(z),

z → e2π i/3Mz, z̄ → e−2π i/3Mz̄. (2.17)

The solutions of the mBD equation (2.14) which will be relevant for the current analysis must
respect this symmetry, be continuous at every finite non-zero z, z̄, and grow more slowly than
exponentially at z, z̄ → ∞. As in Lukyanov & Zamolodchikov [28] for the (modified) sinh-Gordon
case, we will consider a one-parameter family of such solutions, characterized by a logarithmic
behaviour near the origin. Before listing in detail the exact conditions that are required, polar
coordinates can be introduced to show these properties more neatly:

z = ρ eiφ , z̄ = ρ e−iφ . (2.18)

In most of the following, z and z̄ will be treated as independent complex variables, so the solution
η will be a function of the independent variables (ρ,φ), according to (2.18).

It is now possible to list the properties of the sought-after solutions, as follows:

(i) periodicity:

η

(
ρ,φ + 2π

3M

)
= η(ρ,φ); (2.19)

or, better, the solutions η(ρ,φ) are single-valued functions on a cone with the apex angle
2π/3M,

C2π/3M : φ ∼ φ + 2π
3M

, 0 ≤ ρ <∞; (2.20)

(ii) the solutions η(ρ,φ) are real-valued for real ρ and φ, and finite everywhere on the cone
C2π/3M, except for the apex ρ = 0;

(iii) large-ρ asymptotic:
η(ρ,φ)= −2M ln ρ + o(1) as ρ→ ∞; (2.21)

(iv) small-ρ asymptotic:

η(ρ,φ)= −2 g ln(ρ)+ O(1) for − 1< g< 1
2 . (2.22)

The factors −2M and −2g in (2.21) and (2.22) have been chosen, for future convenience, to be
consistent with earlier studies [13,28].
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As in Lukyanov & Zamolodchikov [28], one can start from equation (2.22) and develop an
expansion for z, z̄ ∼ 0 of the form

η= −g ln(zz̄)+ η0 +
∞∑

k=1

γk(z
3Mk + z̄3Mk)− e−η0

(g + 1)2
(zz̄)g+1 − s6Me2η0

(−2g + 1)2
(zz̄)−2g+1 + · · · , (2.23)

where η0 γk are integration constants, all remaining terms omitted in the expansion being
uniquely determined once these constants are given. These constants are not new parameters, but
should be fixed by demanding the consistency of this expansion with the remaining conditions
(i)–(iii).

The expansion (2.23) remains valid with z and z̄ regarded as independent complex variables
and, for later analysis, it will be useful to record the form of (2.22) in the so-called light-cone limit
z̄ → 0 (with fixed z),

η∼ −g ln(zz̄)+ η0 + γ (z), (2.24)

where γ (z)=∑∞
k=1 γkz3Mk.

At this stage, it is possible to define the linear problem associated with the mBD equation

DΨ = 0, D̄Ψ = 0, (2.25)

where D and D̄ are components of an sl(3) connection and can be found by rearranging, in
light-cone coordinates, the matrix operators (2.10) with an appropriate redefinition of the spectral
parameter λ and after the introduction of the potential p(z),

D = ∂z +

⎛⎜⎝ 1
2∂zη 0 λ eηp(z)

−λ e−(1/2)η 0 0
0 −λ e−(1/2)η − 1

2∂zη

⎞⎟⎠ (2.26)

and

D̄ = ∂z̄ +

⎛⎜⎝ − 1
2∂z̄η λ−1e−(1/2)η 0
0 0 λ−1e−(1/2)η

λ−1p(z̄) eη 0 1
2∂z̄η

⎞⎟⎠. (2.27)

It is possible to deal directly with this system of six equations on Ψ to get information about the
solutions and their asymptotics, but it turns out to be simpler to deal with a reduction of (2.26)
and (2.27) to two third-order differential equations. Moreover, this step will be necessary for the
continuation of the analysis and to show the connection between the original nonlinear problem
and a previously studied spectral problem. This reduction can be implemented defining a vector
solution to equations (2.26) and (2.27):2

Ψ =

⎛⎜⎝λ−1/2eη/2∂z(eη∂z(e−ηψ))
−λ1/2eη∂z(e−ηψ)
λ3/2e−η/2ψ

⎞⎟⎠=

⎛⎜⎝ λ−3/2e−η/2ψ̄
−λ−1/2eη∂z̄(e−ηψ̄)

λ1/2eη/2∂z̄(eη∂z̄(e−ηψ̄))

⎞⎟⎠. (2.28)

The equality between each row of the two parentheses in (2.28) must always hold, and will be
useful to find large-ρ asymptotics of (2.25). Applying D and D̄ to the first and the second vectors
in (2.28), respectively, it is simple to find the system of two third-order linear differential equations
that constitutes a compatibility condition on ψ and ψ̄ so that Ψ really is a solution of (2.25). The
two equations are

∂3
zψ − ((∂zη)

2 + 2∂2
z η)∂zψ + (λ3p(z)− ∂zη∂

2
z η − ∂3

z η)ψ = 0 (2.29)

and
∂3

z̄ ψ̄ − ((∂z̄η)
2 + 2∂2

z̄ η)∂z̄ψ̄ + (λ−3p(z̄)− ∂z̄η∂
2
z̄ η − ∂3

z̄ η)ψ̄ = 0. (2.30)

The next step is to determine the ρ→ 0 asymptotics of solutions to (2.25). To do this, it
is convenient to focus attention on equation (2.29), though the result would not change if

2This is simply recovered solving each of the systems (2.25) with respect to two out of three components of the vector Ψ .
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equation (2.30) was taken as the starting point instead. This equation is entirely in z, except for
the appearance of z̄ in η(z, z̄) that, for now, can be considered as a simple parametric dependence.
Finding an asymptotic solution ψ(z) enables a solution Ψ of (2.25) for ρ→ 0 to be determined
through (2.28). Substituting the asymptotic form (2.22) of η into (2.29) and considering the ρ→ 0
limit (actually z → 0) brings equation (2.29) into the form

∂3
zψ − 1

z2 g(g + 2)∂zψ + 1
z3 g(g + 2)ψ = 0,

and seeking solutions of the form ψ = zμ + · · · the problem is reduced to the solution of the
following indicial equation:

(μ− 1)[μ(μ− 2)− g(g + 2)] = 0.

This equation gives three different leading behaviours in the z → 0 limit,

ψ+ ∼ z−g, ψ0 ∼ z and ψ− ∼ zg+2. (2.31)

These expressions give the leading behaviours and can be adjusted with appropriate
multiplicative constants; once inserted into (2.28) in the usual ρ→ 0 limit, they provide the three
asymptotic solutions Ψ to (2.25). They are

Ψ + ∼

⎛⎜⎝ 0
0

e(−iφ−θ)g

⎞⎟⎠ , Ψ 0 ∼

⎛⎜⎝0
1
0

⎞⎟⎠ and Ψ − ∼

⎛⎜⎝e(iφ+θ)g
0
0

⎞⎟⎠ (ρ→ 0) (2.32)

with λ= eθ . In order to fix the values of the constants introduced earlier, a particular symmetry
condition has been considered. In fact, although η(ρ,φ) is a single-valued function on the cone
(2.20), the connection components (2.26) and (2.27) are not. Instead, the linear problem (2.25) is
invariant with respect to the transformation

Ω : φ→ φ + 2π
3M

, θ → θ − 2π i
3M

, (2.33)

involving the shift of the spectral parameter θ (from now on θ and λ will be referred to as
spectral parameters interchangeably, keeping in mind that λ= eθ ). Imposing this symmetry, it
is straightforward to find (2.32).

On the other hand, it is also possible to give the large-ρ asymptotics, and for this it is best to
use a semiclassical approximation. As will be explained more formally in the following, assuming
that θ is real, a generic solution of (2.29) grows exponentially at ρ→ ∞, but [2,13] there are special
(‘subdominant’) solutions that decay in the sector

− 4π
3M + 3

<φ <
4π

3M + 3
. (2.34)

In order to build such a solution to (2.25), the first step is the specification of a ρ→ ∞ asymptotic
for (2.29), just as done before for the solution in the region near ρ = 0, again remembering to
substitute the large-ρ solution of (2.14). In this particular limit, equation (2.29) reduces to a sum
of a third-order derivative and a ‘potential’ Q(z) that will fix the leading term of the subdominant
Wentzel–Kramers–Brillouin (WKB) solution,

Q(z)= e3θ (z3M − s3M). (2.35)

It follows from (2.35) that the WKB-like solution has, for M> 1
2 , the form

ψ ∼ c1z−M exp

(
− zM+1

M + 1
eθ + f (z̄)

)
, (2.36)
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where c1 is an arbitrary constant, and the term f (z̄) in the exponential carries the dependence on z̄
of ψ . To retrieve a more exact form of (2.36), it is convenient to seek a solution of (2.30) of the form

ψ̄ ∼ c2z̄−M exp

(
− z̄M+1

M + 1
e−θ + g(z)

)
(2.37)

and then, by inserting both results in (2.28), the compatibility between the two solutions will fix
these integration-generated functions. This yields

c2 = c1eθ = c eθ , f (z̄)= − z̄M+1

M + 1
e−θ , g(z)= − zM+1

M + 1
eθ , (2.38)

and the final semiclassical solution of (2.29) (in polar coordinates) is

ψ
WKB∼ c e−θ z−M exp

(
−2ρM+1

M + 1
cosh(θ + i(M + 1)φ)

)
. (2.39)

By inserting (2.39) into the first of (2.28), it is then straightforward to obtain

Ψ
WKB∼ eθ/2

⎛⎜⎝ eiφM

1
e−iφM

⎞⎟⎠ exp

(
−2ρM+1

M + 1
cosh(θ + i(M + 1)φ)

)
, ρ→ ∞. (2.40)

Because the functions {Ψ+,Ψ0,Ψ−} form a basis in the space of solutions of linear problem (2.25),
a linear relation of the following form must hold:

Ψ = Q+(θ , s)Ψ+ + Q0(θ , s)Ψ0 + Q−(θ , s)Ψ−, (2.41)

where the coefficients Q±,0, which are independent of the variables ρ and φ, are functions of the
spectral parameter θ and of s, as well as of the parameter g (this parameter has been temporarily
omitted). These coefficients will coincide (up to an overall constant) with Q-functions of a two-
dimensional massive QFT related to the Lie algebra A2, or su(3).

3. The conformal limit
Before proceeding with the advertised correspondence, it is useful to work a little more on
equation (2.29). The problem studied up to now has an important connection with a known
spectral problem of a particular third-order differential equation. In order to build an appropriate
analysis and to understand where the various steps come from, (2.29) will be reduced to this
spectral problem and a brief review of previously obtained results will be given.

Recall that equation (2.29) is of the form

∂3
zψ − ((∂zη)

2 + 2∂2
z η)∂zψ + (λ3p(z, s3M)− ∂zη∂

2
z η − ∂3

z η)ψ = 0,

and, as was said already, z̄ plays the role of a simple parameter, so it is possible to take the so-
called light-cone limit z̄ → 0 (or, if (2.30) had been chosen as the starting point, then the light-cone
limit would have involved z instead of z̄) in which η assumes the form (2.24). After that, the limit
z ∼ s → 0, θ → +∞ can be taken, with the combinations

x = eθ/(M+1)z, E = s3Me3θM/(M+1) (3.1)

kept finite, whereas
x̃ = e−θ/(M+1)z̄ → 0, Ẽ = s3Me−3θM/(M+1) → 0. (3.2)

This limit is a particular scaling limit, because z, s are sent to zero and θ to infinity, but they are
rearranged in combinations such that the new ‘variables’ x and E do not diverge or collapse. This
is an important turning point of the theory, because it transforms the correspondence between an
ordinary differential equation and a massive QFT into a correspondence with a CFT [13] (which is
massless). For this reason, the limit (3.2) can be called the conformal limit, with s (or, more precisely,
sM+1) taking the role of the mass scale.
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Inserting (3.1) in (2.29) and taking the limits just discussed, equation (2.29) reduces to[
∂3

x − g(g + 2)
(

1
x2 ∂x − 1

x3

)
+ p(x, E)

]
y(x, E, g)= 0, (3.3)

where y has been used instead ofψ to avoid confusion among the various solutions. Motivated by
the results of earlier studies [2,13], a generalization of a theorem due to Sibuya for second-order
equations can now be proposed, as follows.

Conjecture 3.1. Equation (3.3) has a solution y(x, E, g) with the following properties:

(i) y is an entire function of (x, E) though, owing to the branch point in the potential at x = 0, x must
in general be considered to live on a suitable cover of the punctured complex plane;

(ii) y, y′ = ∂xy and y′′ = ∂2
x y admit, for M> 1

2 , the asymptotic representations

y ∼ x−Me−(1/(M+1))xM+1
, y′ ∼ −e−(1/(M+1))xM+1

, y′′ ∼ xMe−(1/(M+1))xM+1
, (3.4)

as x → ∞ in the sector

| arg(x)|< 4π
3M + 3

; (3.5)

(iii) y is uniquely fixed by the properties (i) and (ii).

The behaviour of the solution (3.4) follows from the more general formula

y(x, E)∼ Q(x, E)−1/3 exp
(

−
∫ x

x0

Q(x, t)1/3 dt
)

, (3.6)

where y solves a generic equation ∂3
x y + Q(x, E)y = 0. This is the analogue of a WKB

approximation for a solution of a Schrödinger equation. It is possible to define rotated solutions,
by analogy with Dorey et al. [15], in order to construct bases of solutions for (3.1). For general
values of k, define

yk(x, E, g)=ωky(ω−kx,ω−3MkE, g), (3.7)

with

ω= exp
(

2π i
3M + 3

)
. (3.8)

Substituting in, yk solves

∂3
x yk − g(g + 2)

(
1
x2 ∂x − 1

x3

)
yk + e−2kπ ip(x, E)yk = 0, (3.9)

and so, for k ∈ Z, (3.7) provides a potentially new solution to (3.1). However, for now, it is
convenient to leave k arbitrary because fractional values will also be needed. We also define the
Stokes sectors

Sk :
∣∣∣∣arg(x)− 2πk

3M + 3

∣∣∣∣< π

3M + 3
. (3.10)

Some discussion of the dominance and subdominance of solutions is also required, because, for
a third-order problem, this is a little more complicated than the second-order case. For this, we
largely follow Dorey et al. [15]. First, the behaviour specified by conjecture 3.1 lies in the sectors
S−3/2 ∪ S−1/2 ∪ S1/2 ∪ S3/2. Furthermore, in general, there are three types of asymptotic solution
for large |x|. Aside from the well-behaved leading term x−M exp(−xM+1/(M + 1)), there are also
solutions that behave as x−M exp(e±π i/3xM+1/(M + 1)). (This can be traced to the three third roots
of −1, which are −1, eπ i/3 and e−π i/3.)According to the sector being considered, either one or two
of these solutions tend to zero for large |x|. The subdominant solution in any given sector will be
defined to be the one that tends to zero fastest in that sector (it might also be called maximally
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subdominant). Finally, yk, up to overall scalar factor, is characterized as the solution of (3.1) which
is subdominant in the sector Sk. The asymptotic (3.4) along with the definition (3.7) implies

yk ∼ωk(M+1)x−Me−(xM+1/(M+1))ω−(M+1)k
, y′

k ∼ −e−(xM+1/(M+1))ω−(M+1)k

and y′′
k ∼ω−k(M+1)xMe−(xM+1/(M+1))ω−(M+1)k

,

⎫⎬⎭ (3.11)

for |x| → ∞ with

x ∈ Sk−3/2 ∪ Sk−1/2 ∪ Sk+1/2 ∪ Sk+3/2. (3.12)

In the region formed by the two sectors Sk+1/2 ∪ Sk+3/2, the three asymptotics yk, yk+1 and yk+2
live together and comparing their forms, given by (3.11), they turn out to be independent of each
other. A further proof of this fact can be built defining the Wronskian of the three solutions,

Wk1,k2,k3 = W[yk1 , yk2 , yk3 ], (3.13)

where the 3 × 3 Wronskian is defined as

W[f , g, h] = det

⎛⎜⎝f f ′ f ′′
g g′ g′′
h h′ h′′

⎞⎟⎠ . (3.14)

For f , g and h solving (3.1), W[f , g, h] is independent of x, and f , g and h are linearly independent
if and only if W[f , g, h] = 0. In order to demonstrate the independence of yk, yk+1 and yk+2, it is
helpful first to compute (k1, k2, k3)= (−1, 0, 1)

W−1,0,1 = −3i
√

3 (3.15)

and then, using the general result

Wk1+b,k2+b,k3+b(E)= Wk1,k2,k3(ω
−3MbE), (3.16)

we see that Wk,k+1,k+2 is always non-zero, thus confirming the independence of {yk, yk+1, yk+2}.
The final step for this section is to show how to build new solutions to (3.1) using the yks.

Supposing that k1 and k2 differ by an integer so that e−2k1π i = e−2k2π i = e−2kπ i, it can be checked
that the function

zk1,k2(x, E, g)= yk1 y′
k2

− yk2 y′
k1

, (3.17)

which is actually a 2 × 2 Wronskian, provides a solution of

∂3
x zk1,k2 − g(g + 2)

(
1
x2 ∂x − 1

x3

)
zk1,k2 − e−2kπ i(x3M − E)zk1,k2 . (3.18)

Equation (3.18) is the adjoint of (3.9) and, if k is shifted by a half-integer, then zk1,k2 becomes a
solution of the original equation (3.9)

∂3
x zk1+1/2,k2+1/2 − g(g + 2)

(
1
x2 ∂x − 1

x3

)
zk1+1/2,k2+1/2 + e−2kπ i(x3M − E)zk1+1/2,k2+1/2. (3.19)

For |k1 − k2|< 3, the regions (3.12) for k1 = k2 = k overlap, and it is possible to get an asymptotic
for zk1,k2 from (3.11). In particular, for k = 1, 2, 3 we have

z−k/2,k/2(x, E, g)∼ 2i sin
(
πk
3

)
x−Me−2 cos(πk/3)(1/(M+1))xM+1

, x → ∞. (3.20)

Considering (3.18) and (3.20), for k = 1 it follows, by uniqueness of solutions, that

z−1/2,1/2(x, E, g)= i
√

3y(x, E, g). (3.21)

This result is limited to the (k = 1)-case, as for other values of the parameter it is not possible
to retrieve enough information to uniquely pin the function down. On the other hand, (3.21) is
useful to determine the BAEs, but this will be shown in §4, starting from the original problem
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(2.29). Now that the analyticity properties of solutions of (3.1) have been studied, it is possible
to return to (2.29) and apply to that, with the appropriate caution, all the results that have been
found in this section.

4. Bethe ansatz equations
In this section, BAEs will be built starting from certain functional relations involving the
coefficients Q± already introduced at the end of §2. In order to get there, it is necessary to apply
the same analysis described in §3 to reproduce similar results for the original equation (2.29),
which is repeated below for convenience

∂3
xψ − ((∂xη)

2 + 2∂2
xη)∂xψ + (p(x, E)− ∂xη∂

2
xη − ∂3

xη)ψ = 0 (4.1)

and
∂3

x̃ψ − ((∂xη)
2 + 2∂2

x̃η)∂xψ̄ + (p(x̃, Ẽ)− ∂xη∂
2
x̃η − ∂3

x̃η)ψ̄ = 0, (4.2)

where

x = z eθ/(M+1), x̃ = z̄ e−θ/(M+1), E = s3Me3θM/(M+1), Ẽ = s3Me−3θM/(M+1) (4.3)

and
ψ ≡ψ(x, x̃, E, Ẽ, g), ψ̄ ≡ ψ̄(x, x̃, E, Ẽ, g). (4.4)

First of all, the rotated solutions, analogous to (3.7), have to be defined. In order to do this, the
periodicity of η(ρ,φ) has to be exploited because it is the only information, besides the asymptotic
behaviours, which is known. It turns out that the right-hand form is

ψk(x, x̃, E, Ẽ, g)=ωkψ(ω−kx,ωkx̃,ω−3MkE,ω3MkẼ, g), (4.5)

where

ω= exp
(

2π i
3M + 3

)
. (4.6)

The function (4.5) solves

∂3
xψk − ((∂xη)

2 + 2∂2
xη)∂xψk + (e−2kπ ip(x, E)− ∂xη∂

2
xη − ∂3

xη)ψk = 0, (4.7)

where, analogous to (3.9), a e−2kπ i-term appears. In general, arbitrary integer or half-integer
values for k will be considered, and the definition of Stokes sectors remains unchanged (see (3.10)).
Following the discussion of §3, it is straightforward to find the |x| → ∞ behaviour of the rotated
solutions (4.5) (keeping in mind that x̃ goes to ωkx̃) and setting

c = eθ/(M+1) (4.8)

and

ψk ∼ωk(M+1)x−M exp

[
− xM+1

M + 1
ω−k(M+1) − x̃M+1

M + 1
ωk(M+1)

]
,

ψ ′
k ∼ − exp

[
− xM+1

M + 1
ω−k(M+1) − x̃M+1

M + 1
ωk(M+1)

]

and ψ ′′
k ∼ω−k(M+1)xM exp

[
− xM+1

M + 1
ω−k(M+1) − x̃M+1

M + 1
ωk(M+1)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.9)

(the derivatives are only on x).
Now, the three generic solutions {ψk,ψk+1,ψk+2} form a basis for the solutions of

equation (2.29). Again, the proof of this property comes from the evaluation of the Wronskian
for (k1, k2, k3)= (−1, 0, 1)

W−1,0,1 = W[ψ−1,ψ0,ψ1] = −3i
√

3, (4.10)

which shows that these three solutions are independent.
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The next step is to define the analogues of the functions (3.17) that, here, will be denoted as
uk1,k2 so as to avoid confusion with the variable z. They read as

uk1,k2(x, x̃, E, Ẽ, g)= [ψk1ψ
′
k2

− ψk2ψ
′
k1

](x, x̃, E, Ẽ, g), (4.11)

where, again, the z̄-dependence has been omitted. The solutions (4.11) solve

∂3
x uk1,k2 − ((∂xη)

2 + 2∂2
xη)∂xuk1,k2 − (e−2π ikp(x, E)+ ∂xη∂

2
xη + ∂3

xη)uk1,k2 = 0, (4.12)

and, also in this case, it is possible to evaluate (4.11) for k1 = −k2 = −k/2

u−k/2,k/2 ∼ 2i sin
(π

3
k
)

x−M exp

[
−2 cos

(π
3

k
)( xM+1

M + 1
+ x̃M+1

M + 1

)]
, (4.13)

which, when compared with (4.9) for k = 1, gives the identification

u−1/2,1/2 = i
√

3ψ . (4.14)

To get the BAEs, equation (4.14) is used, exploiting the relation

u−1/2,1/2 =ψ−1/2ψ
′
1/2 − ψ1/2ψ

′
−1/2 = i

√
3ψ0. (4.15)

At this point, the solutions ψk can be expressed on the basis of the |z| → 0 solutions (2.31) with the
appropriate normalization to capture the correct behaviour in the conformal limit

ψk = Q+
k (E, Ẽ)χ+

k + Q0
k(E, Ẽ)χ0

k + Q−
k (E, Ẽ)χ+

k , (4.16)

where

Q±,0
k (E, Ẽ)= Q±,0(ω−k3ME,ωk3MẼ) (4.17)

and

χ+
k ∼ωk(g+1)x−g,

χ0
k ∼ x

and χ−
k ∼ω−k(g+1)xg+2.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.18)

The functions Q±,0(E, Ẽ), introduced in (4.16), are the massive off-critical analogue of the CFT-
related functions Q±,0(E) [10,15]. Inserting the expression (4.16) into (4.15) and considering, at
first, the terms proportional to x−g, a functional relation containing Q+ and Q0 is obtained

i
√

3Q+
0 = Q+

−1/2Q0
1/2ω

−(g+1)/2 − gQ+
1/2Q0

−1/2ω
(g+1)/2

− Q+
1/2Q0

−1/2ω
(g+1)/2 + gQ+

−1/2Q0
1/2ω

−(g+1)/2

= (g + 1)(Q+
−1/2Q0

1/2ω
−(g+1)/2 − Q+

1/2Q0
−1/2ω

(g+1)/2) (4.19)

with the appropriate ω rotation factors. Equation (4.19) can be written in terms of the variable
θ = (M + 1)/(3M) ln E as

i
√

3Q+(θ)= (g + 1)
(

Q+
(
θ + i

π

3

)
Q0

(
θ − i

π

3

)
ω−(g+1)/2

− ω(g+1)/2Q+
(
θ − i

π

3

)
Q0

(
θ + i

π

3

))
(4.20)

(with s and g kept constant).
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Table 1. The dictionary.

classical modified
Bullough–Dodd quantum field theory on a cylinder

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ ⇔ particle rapidity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sM+1 ⇔ Rm (R, circumference;m, mass gap)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g ⇔ twist parameter
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M ⇔ ‘q’ in the q-state Potts model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Considering (4.20) evaluated at θ = θn + iπ/3 and θ = θn − iπ/3 with Q+(θn)= 0 to get

i
√

3Q+
(
θn + iπ

3

)
= (g + 1)

(
Q+

(
θn + i2π

3

)
Q0(θn)ω

−(g+1)/2
)

(4.21)

and

i
√

3Q+
(
θn − iπ

3

)
= −(g + 1)

(
ω(g+1)/2Q+

(
θn − i

2π
3

)
Q0(θn)

)
, (4.22)

respectively, and taking the ratio, the sought-after BAEs are obtained [13]

Q+(θn + i2π/3)
Q+(θn − i2π/3)

Q+(θn − iπ/3)
Q+(θn + iπ/3)

= −ω(g+1). (4.23)

The same method can be used to find BAE for the Q− functions. In conclusion, by defining θ±
the zeroes relative to Q±, the BAEs for the two spectral functions are

Q±(θ±
n + i2π/3)

Q±(θ±
n − i2π/3)

Q±(θ±
n − iπ/3)

Q±(θ±
n + iπ/3)

= −ω±(g+1). (4.24)

The BAEs (4.24) can be transformed into the nonlinear integral equation given in §6 of Dorey &
Tateo [13] for the ground-state energy of the Izergin–Korepin model or, equivalently, of the scaling
q-state Potts and tricritical Potts models on a cylinder geometry. This family of systems plays a
key role in the study of integrable QFTs in 1+1 dimensions and statistical mechanical models in
two dimensions, and is related to the φ1,2, φ2,1 and φ1,5 integrable deformations of minimal CFTs.
The Ising model in external magnetic field, with its E8-related mass spectrum [39], is perhaps the
most physically interesting system in the family. A schematic of the correspondence between the
classical objects introduced here and the ‘quantum field theory world’ is given in table 1.

5. Conclusions
The main objective of this paper was to discuss a particular generalization of the so-called
ODE/IM correspondence to the massive case. The steps taken by Lukyanov & Zamolodchikov
[28] clarified how massive generalizations of the ODE/IM correspondence should be built. The
results of Lukyanov & Zamolodchikov [28] concern the relation between the classical and the
quantum versions of the sinh-Gordon model. Adapting their discussion, it has been possible, here,
to relate the classical (Tzitzéica) Bullough–Dodd field equation to the Izergin–Korepin massive
QFT. The discussion parallels precisely the conformal case treated in Dorey & Tateo [13] and links
a certain linear problem to a Bethe ansatz system associated with the a2 algebra. The BAEs (4.24)
and the demonstration of a link with the CFT limit case of Dorey & Tateo [13], described in §3, are
the main results of the paper.

After the first discovery of this type of correspondence, it was striking how certain functional
relations, typically emerging in the QFT domain, encoded spectral data. In the work of Lukyanov
and Zamolodchikov, this rich structure was also enlarged to contain the relation between certain
nonlinear partial differential equations and linear spectral problems, thereby giving further useful
insights into the general structure of the theory. Here, further support of the validity of this
scheme has been given, enlarging the number of working cases of the correspondence. The BD



13

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120052

......................................................

equation has been chosen because, with the sinh-Gordon equation, it is the simplest representative
of the affine Toda field theories. At this stage, it is fairly clear how a more general correspondence
scheme could be developed starting from Toda field theories based on more general Lie algebras.
The general scheme is as follows, where the arrows have been annotated with labels of sections in
this paper and a reference, to indicate where the corresponding step is further discussed for the
particular case of the BD equation:

integrable nonlinear wave equation

zero curvature
condition (§2)

linear problem

scaling
limit (§3)

ODE
ODE/IM correspondence [11]

BAE CFT

BAE massive QFT
massive ODE/IM
correspondence (§4)

UV limit

Another direction for future work is the generalization of the correspondence between the
Bethe ansatz and classical integrable systems to non-relativistically invariant models such as the
KdV equation and its hierarchy, and the generalization from integrable field theories to integrable
lattice models.

In conclusion, the connection between these two, originally disconnected, domains of
mathematics and theoretical physics gives a hint of a bigger scheme in the wide framework of
classical and quantum integrability.

This project was partially supported by an INFN grant no. PI11, an STFC rolling grant no. ST/G000433/1
and by the Italian MIUR-PRIN contract no. 2009KHZKRX-007 ‘Symmetries of the Universe and of the
Fundamental Interactions’.
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