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OPERS FOR HIGHER STATES OF QUANTUM KDV MODELS

D.MASOERO, A.RAIMONDO

ABsTrRACT. We study the ODE/IM correspondence for all states of the quan-
tum g-KdV model, where § is the affinization of a simply-laced simple Lie
algebra g. We construct quantum g-KdV opers as an explicit realization of
the class of opers introduced by Feigin and Frenkel [20], which are defined by
fixing the singularity structure at 0 and oo, and by allowing a finite number of
additional singular terms with trivial monodromy. We prove that the general-
ized monodromy data of the quantum g-KdV opers satisfy the Bethe Ansatz
equations of the quantum g-KdV model. The trivial monodromy conditions
are equivalent to a complete system of algebraic equations for the additional

singularities.
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INTRODUCTION

The purpose of the present paper is to explicitly construct and then study a class
of opers, introduced by Feigin and Frenkel [20], corresponding to higher states of
the quantum g-KdV model, where g is the untwisted affinization of a simply-laced
simple Lie algebra g. The work is the natural continuation of our previous papers in
collaboration with Daniele Valeri on the ODE/IM correspondence for the ground
state of the quantum g-KdV model, where we developed an effective method to
construct solutions of the Bethe Ansatz equations as generalised monodromy data
of affine opers [41, 42].

The quantum g-KdV model arises as the quantisation of the second Hamiltonian
structure of the Drinfeld-Sokolov hierarchy [6, 4, 18] — equivalently Toda field theory
[19] — as well as the continuous (conformal) limit of XXZ-like lattice models whose
underlying symmetry is Uy(g) [13]. Both the lattice models and the quantum
field theories carry the structure of quantum integrability (the quantum inverse
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scattering), so that each state is characterised by a solution of the (nested) Bethe
Ansatz equations, which in turn furnishes all the physical observables of the theory.

In a ground-breaking series of papers Dorey and Tateo [15], followed by Bazhanov,
Lukyanov, and Zamolodchikov [7], discovered that the solution of the Bethe Ansatz
equations of the ground state of quantum ;[;deV (i.e. quantum KdV) admits a
very simple and neat representation. Let indeed ¥(z, E) the unique subdominant
solution as © — +o00 of the Schrodinger equation

)+ @+ D gy, (0.1)

22
with a > 0, and Rel > —1/2. Then, Q(E) = lim,_,ox " 1¥(x, E) is the re-
quired solution of the Bethe Ansatz equations, with the parameters «, [, E of the
Schroedinger equation corresponding to the the central charge ¢, the vacuum pa-
rameter, and the spectral parameter of the quantum model, see [§] for the precise
identification.

Such a discovery, which was thereafter known as the ODE/IM correspondence,
has been generalised to many more pairs of a quantum integrable model (solvable
by the Bethe Ansatz) and a linear differential operator. Examples of these generali-
sations, which are conjectural but supported by strong numerical evidence and deep
mathematical structures, include the correspondence between all higher states of
the quantum ,;\[Q-Kdv model and Schroedinger equation with 'monster potentials’
[8], the correspondence between the ground state of massive deformations of the
quantum KdV model, such as quantum Sine Gordon and quantum affine Toda theo-
ries, and the Lax operator of a dual classical theory [38, 5, 14], and the very recent
discovery of the correspondence between an O(3) non-linear Sigma model and a
Schroedinger operator [3] . The appearance of the Thermodynamic Bethe Ansatz
in relation with BPS spectra in A/ = 2 Gauge theories [28], Donaldson-Thomas
invariants [10], and in more general quantum mechanics equations [40, 27, 31], is
also expected to be manifestations of the same phenomenon.

All these particular ODE/IM correspondences are strong evidences of the exis-
tence of an overarching ODE/IM correspondence, which can be informally stated
as follows:

Given an integrable quantum field theory, and one state of that theory, there
exists a differential operator whose generalised monodromy data provide the solution
of Bethe Ansatz equations of the given state.

One can make the the above conjecture much more precise for the case of the
quantum g—KdV model. First of all, as discovered by Feigin and Frenkel [20], the
differential operators on the ODE side of the correspondence are certain g opers,
where ©g is the Langlands dual algebra of g. This implies that in the particular
case under our analisys, namely when g is the untwisted affinization of a simply
laced simple Lie algebra g, we should consider operators with values in g = g.

The complete ODE/IM correspondence for g, with g simply laced, can be then
described as follows. The quantum model is defined by the choice of the central
charge ¢ and the vacuum parameter p € b of the free field representation [6, 4, 33,
29]. Every state of the Fock space is associated to a set of rank g entire functions
Q(l)()\),l = 1...rankg, of the spectral parameter A\ — first introduced in [6], later
generalized in [4, 33, 29], and finally settled in [26, 25] in the most general case —
which solve the following Bethe Ansatz equations:

rank g (j)( imCly; /\*)
H e*?iﬂ'ﬁjc,gj Q ¢ —
e QU) (e—iﬂ'cej )\*)
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for every zero \* of QW ()). In the above formula, C}j is the Cartan matrix of g,
and the phases 8; as well as the relevant analytic properties of the functions Q’s
depend on the parameters ¢ and p — see [6, 7, 12, 41].

In order to define the ODE/IM correspondence, one needs the following data: a
principal nilpotent element f C g, a Cartan decomposition g = n_ & h & ny such
that f = )", fi € n_ where f;’s are the negative Chevalley generators of g, the dual
Weyl vector p¥ € B, a highest root vector eg, the dual of the highest root Y € b,
an arbitrary but fixed element of the Cartan subalgebra r € b, an arbitrary but
fixed real number k € (0,1), an arbitrary complex parameter A € C, and finally a
possibly empty finite set J of pairs (w;, X (j)) € C* x ny, to be determined.

Given the above data, we say that a quantum g-KdV oper is an oper admitting
the following representation

L(z,\) =0, w 14 Az F)e w, 0.3

(2.0) = 0: + ———=+(1+ )e+j€ZJ E— (0.3)
where in addition the regular singularities {(w;, X(j))};es have to be chosen so
that the (0.3) has trivial monodromy at each w; for every value of A\. These further
conditions ensure that the residues —6" + X (j) belong to a 2h" —2 dimensional sub-
space of b, namely t = CAY @[V, n, ], which is strictly related to the Z—gradation
on g induced by the element 6V, and carries a natural symplectic structure. The
quantum g—KdV opers (0.3) provide an explicit realization of the opers proposed
by Feigin and Frenkel in the paper [20] (see also [25]), which was the main inspira-
tion of the present work.

How does one attach a solution of the Bethe Ansatz equations to the above opers?
The method was derived in our previous papers on the ground state oper [41, 42],
which build on previous progresses by [12, 43]. Given a quantum g-KdV oper, a
solution of the Bethe Ansatz equation is be constructed as follows, see Section 5.
One considers the regular singularity at 0, and the irregular singularity at co of
(0.3). The generalised monodromy data of the oper are encoded in the connection
matrix between these two singularities. This is obtained by expanding, in every
fundamental representation of g, the subdominant solution at oo in the basis of
eigensolution of the monodromy operator. These coefficients are the so-called @
functions, which satisfy the Q@ system, and hence and satisfy the Bethe Ansatz
equations.

After having introduced the @ functions, the complete Feigin-Frenkel ODE /IM
conjecture |20, Section 5| for the quantum g—KdV model, with g simply-laced, can
be restated as follows.

Conjecture 0.1. To any state of the quantum g—KdV model there corresponds
a unique quantum gKdV oper (0.3) whose Q functions coincide with the solution
of Bethe Ansatz equations of the given state. Moreover, the level N € N of a
state coincides with the cardinality N of the set J of additional singularities of the
corresponding oper. In particular, the ground state corresponds to the case J = (.

In the present paper we address this correspondence, and — together with some
side results which have their own independent interest in the theory of opers — we
provide strong evidence of its validity by proving the following statements:

Statement 1 The @ functions of the quantum g—KdV opers (0.3) are entire functions of
A, are invariant under Gauge transformations, and satisfy the Bethe Ansatz
equations (0.2). This proves Conjecture 8.1 of Frenkel and Hernandez [25].
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Statement 2 The quantum g—KdV opers (0.3) are the most general opers whose @ func-
tions solve Bethe Ansatz equations (0.2) .

Statement 3 The parameters {(w;, X (j))};es of the additional singularities of the quan-
tum g—KdV opers (0.3) are determined by a complete set of algebraic
equations which are equivalent to the trivial monodromy conditions. In the
particular case of a single additional singularity, and for generic values of
the parameters k and r, there are rank g distinct quantum g— KdV op-
ers; this number coincides with the dimension of level 1 subspace of the
quantum g—KdV model.

Remark 0.2. Conjecture 0.1 does not exactly coincide with the original conjecture
by Feigin and Frenkel [20, Section 5], because the explicit construction of the @
functions as the coefficients of a connection problem was still unknown, in the
general case, at the time when [20] was written. Indeed, this construction was later
achieved in full generality in our previous papers [41, 42], where we proved that
coeflicients of the connection problem satisfy a system of relations which goes under
the name of Q@ system. The latter system was itself conjectured to hold by Dorey
et al. [12] and further studied by Sun [43]. Remarkably, the same QQ system was
then showed by Frenkel and Hernandez [25] to hold as a universal system of relations
in the commutative Grothendieck ring K(O) of the category O of representations
of the Borel subalgebra of the quantum affine algebra Uy, (g), a category previously
introduced by Hernandez and Jimbo in [29].

Summarising, the state-of-the-art of the ODE/IM conjecture for the quantum
g-KdV model is the following (see |25] for a thorough discussion of this point).
We have a putative triangular diagram whose vertices are 1) the Quantum g-KdV
opers of Feigin and Frenkel, 2) the states of the Quantum g-KdV model, and 3) the
solutions of the Q@ system with the correct analytic properties. Two arrows are
now well-defined. The first, from opers to solutions of the Q@ system, is provided
by the present work, the second, from states to solutions of the Q@ system, is
provided in [25]. The conjecture will then be proved when a third and bijective
arrow, from the states of the quantum g-KdV model to quantum opers, will be
defined in such a way to make the diagram will be commutative.

Remark 0.3. In the sl case the opers (0.3) were shown in [20] to coincide — up to a
change of coordinates — to the Schrodinger operators with 'monster potential’ stud-
ied by Bazhanov, Lukyanov, and Zamolodchikov [8]. Hence, in this case Conjecture
0.1 coincides with the one stated in [§].

Remark 0.4. The quantum KdV opers (0.3) can be either thought of as multivalued
g opers, or as single valued — i.e. meromorphic — g opers |20, 25]. Both view points
will be discussed in Section 4.

Organization of the paper. The paper is divided in three main parts.

(1) A preamble collecting some preliminary material, on simple and affine Lie
algebras, on opers and on singularities of opers; Sections 1,2,3.

(2) The definition and analysis of quantum KdV opers, including the proof of
statements 1,2 above; Sections 4,5,6.

(3) The analysis of the trivial monodromy conditions for the quantum KdV
opers, including the proof of Statement 3; Sections 7, 8,9,10, 11.

The preamble mostly consists of known material, but it contains a simple intro-
duction to opers and their singularities which may be useful to the reader. Our
approach to opers is intended to be suitable to computations and to make the paper
self-contained and easily accessible.



The quantum KdV opers are axiomatically defined in Section 4, following Feigin
and Frenkel [20]. The axioms fix the singularities’ structure of the opers. They
are meromorphic opers on the sphere such that 0 and oo are singularities with
fixed coeflicients, and all other possible singular points are regular and have trivial
monodromy. To begin our analysis we drop the axiom on the trivial monodromy
and deduce — after fixing an arbitrary transversal space of g — the canonical form
of those opers which satisfy all other axioms; see Proposition 4.7. Such a canonical
form does not coincide with (0.3), because in the canonical form a regular singularity
is not a simple pole of the oper.

In Section 5, we study the generalised monodromy data of quantum KdV oper
making use of their canonical form. We define the @) functions and prove that they
satisfy the Q@ relations and thus the Bethe Ansatz equations, see Theorem 5.14.
This section is based on our previous work [41], as well as on a new approach to
the monodromy representation of multivalued opers.

In Section 6 we prove that the quantum g—KdV opers are Gauge equivalent to
a unique oper of the form (0.3), see Corollary 3.11. To this aim we introduce and
study an extended Miura map. This is defined as the map that to an oper whose
singularities are first order poles associates its canonical form. We prove that the
extended Miura map, when appropriately restricted, is bijective.

The analysis of the trivial monodromy conditions for the quantum g—KdV opers
(0.3) is divided in the five remaining sections.

In sections 7 and 8 we study the Lie algebra grading induced by the element
0V, and we write the trivial monodromy conditions as a system of equations on
the Laurent coefficients of the oper at the singular point. One of these equations is
linear and is equivalent to require that the elements —0¥ 4 X (), for j € J, belong to
the 2hY —2 dimensional symplectic subspace t C b. We introduce a canonical basis
for the symplectic form on t and use it in Section 9 to derive system (9.22), which is
equivalent to the trivial monodromy conditions. This is a complete system of (2h" —
2)|J| algebraic equations in the (2hY —2)|J| unknowns {(w;, X (7))} ;es, which fixes
the additional singularities and thus completely characterise the quantum KdV
opers.

In Section 10 we specialise system (9.22) to the cases of the Lie algebras A,,,n >
2, Dy,n >4, and Eg (we omit to show our computations in the case Er, Fg due to
their excessive length). By doing so we reduce (9.22) to a system of 2|.J| algebraic
equations in 2|.J| unknowns. Finally, in Section 11 we deal with the case g = slo,
which was already considered in [8, 20, 21] and requires a separate study.
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1. AFFINE KAC-MOODY ALGEBRAS

1.1. Simple Lie algebras. Let g be a simply-laced simple Lie algebra of rank n,
and let hY be the dual Coxeter number of g. Let h be a Cartan subalgebra and
A C bh* be the set of roots relative to h. The algebra g admits the roots space
decomposition
s=ha P g (1.1)
acA
where go, = {z € g|[h,2] = a(h)z,h € b} is the root space corresponding to
the root a. Set I = {1,...,n}. Fix a set of simple roots Il = {a;,i € [} C A,
let Ay C A be the corresponding set of positive roots and A_ = A\ AL the
negative roots. For o = >, mja; € A define its height as ht(a) = Y. m; € Z.
Let IV = {a),i € I} C b be simple coroots, satisfying (o, ;) = C;; where
C = (Cij)ijer is the Cartan matrix of g. Let

Q=Pza;, Q" =EPzaf
jeI jeI

be respectively the root and the coroot lattice of g. Let W be the Weyl group of g,
namely the finite group generated by the simple reflections

O'i(Oéj):OéjfcijOéi, Z,je]
The above action on h* induces an action of W on b, with simple reflections given
by

Ui(a}/) :a}/—Cjiaiv, i,j €1
Denote by {w;,i € I} (resp. {w,’,i € I'}) the fundamental weights (resp. coweights)
of g, defined by the relations

Q; = ZCjiwj, Oé;/ == ZCNWJV i€ 1.

jel jerI

Corresponingly, we denote by

P=Pzw;, P'=Pw) (1.2)
jeI jer
the weight and coweight lattices of g. For every w € P, we denote by L(w) the
irreducible finite dimensional highest weight g—module with highest weight w.
Let {e;, fi,i € I} be Chevalley generators of g, satisfying the relations

[ ej] = Cijej, (o), fi] = =Ciify, e 3] = dijaf (1.3)
fori,j € I. Let ny (resp. n_) the nilpotent subalgebra of g generated by {e;,i € I'}
(resp. {fi,i € I}), and recall the Cartan decomposition g = n_ ® h & ny. In
addition, denote by = h @ ny the Borel subalgebra associated to the pair (g,b).
Let G be the adjoint group of g, denote by B the (maximal) solvable subroup of G

whose Lie algebra is by, by H the abelian torus with Lie algebra h and by N the
unipotent subgroup of G whose Lie algebra is n,.. Then N is a normal subgroup of

LSince g is simply-laced, then hY = h, the Coxeter number of g. We prefer to use h" in place
of h in view of the extension of the results of the present paper to a generic (simple) Lie algebra
g, in which case the dual Coxeter number appears.
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B and B =N x H. Consider the exponential map exp : ny — N. Given y € ny,
the adjoint action of exp(y) € N on g is given by

1
exp(y)x =z + ) g(ady)kfc, x € g,

E>1

where ad, = [y, z]. Define a bilinear non-degenerate symmetric form (-|-) on h by
the equations

(aﬂa;/) = Cij, i,j€el (14)
and introduce the induced isomorphism v : h — h* as

(W, v(h)) = (W|h), h,h' €.

vV
%

Note that in particular we have v(«
(-|-) on b* satisfies:

) = «y, @ € I, and the induced bilinear form

(Ozi|04j) = Cij, i,jel (15)
follows. As proved in [32], there exists a (unique) nondegenerate invariant symmet-
ric bilinear form (-|-) on g such that

(b]h) is defined by (1.4), (1.6a)
(galb) =0, a €A, (1.6b)
(9algp) =0 a,BEA, a# —p, (1.6¢)
[z,y] = (z]y)r (), 2 € ga,y € Fg_a,a € A. (1.6d)
We will consider this bilinear form on g from now on.
Let p=)_,c;wi € b* be the Weyl vector, and denote
o =1 p) = 30Oy
ijel
The principal gradation of g is defined as
Y —1
o= P o, d={recgllp’,a]=ix}. (1.7)
i=—hV+1
We denote by 7/ the projection from g onto g’:
g gl (1.8)

The element
F=>r (1.9)
icl
is a principal nilpotent element. Clearly, f € g~!, and moreover one can prove
[34] that f satisfies the following properties: Kerady C n_, [f,ny] C by and
ad,v [f,ny] C [f,ny]. Since p¥ is semisimple, it follows that there exists an ad,v-
invariant subspace s of b, such that

by =[finy] S5, (1.10)

and since (Kerady)|n, = 0, then dims = dim by — dimny = n. The choice of s is
not unique, and as a possible choice of s one can always take s = Ker ad,, where e
is that unique element of g such that {f,2p", e} is an sly-triple. However, in this
paper we do not make this specific choice, and we consider an arbitrary subspace
s satisfying (1.10). The affine subspace f + s is known as transversal subspace;
by a slight abuse of terminology, we also refer to the subspace s as a transversal
subspace. The space f + s has the property that every regular orbit of G in g
interects f + s in one and only one point. In addition, for every x € b, there exist
7



a unique a € N and a unique s € s such that a.(f + s) = f + z, where a. denotes
the adjoint action of A" on g. More precisely, the map

N X (f+s)— f+by

provided by the adjoint action is an isomorphism of affine varieties. Last, we
introduce the concept of exponents of the Lie algebra g. Decomposing (1.10) with
respect to the principal gradation, one obtains a set ot equations of the form g° =
[f, g @ st, for i = 0,...,hY — 1, where s* = s N g’ and g"" = {0}. Since
(Kerady)|n, = 0, then dims’ = dimg’ — dimg***. If dims’ > 0, then ¢ is said
to be an exponent of g, and dim s’ is the multiplicity of the exponent i. Counting
multiplicities, there are n = rank g exponents, which we denote by dy,...,d,.

1.2. A basis for g. Let {e;, o), fi,i € I} C g be generators of g defined as above.
Following [32] we define a basis for g as follows. For every pair of simple roots
g, g, ’L,] S I, let

(71)01.]‘ 1< j7
Easa; = § —1 i=7, (1.11)
1 >,
and extend this to a function € : Q x @ — {£1} by bimultiplicativity:
CatB,y = €avEB,yy  €a.B+y = €a,BCa,ys a,B,v7 € Q. (1'12)
Then, for o € A there exists nonzero E, € g, with E,, =e;, E_,, = —fi, 1 € I,
uniquely characterized by the relations
[han] = <h,Oé>Ea, heb, aecl,
Ey, E_o]=— -1 ’ Av
[EO“EB] :Ea”@EOH-,@a aaﬁaa""ﬁ € A;
[Ea, Eg] =0, a,feEN a+ B¢ AU{0}.
We clearly have the root space decomposition
g=ho P CE.. (1.14)
acA
In addition, it follows from (1.6) and (1.13) that for «, 8 € A we have
(Ealh) =0, (Ea|EB) = —6a,—8; (1.15)

where (-|-) is the normalized invariant form defined in (1.6). The following result
will be useful in Section 9.

Lemma 1.1. For every 3,7 € Q, then
i) €8,—y = €8y =By,
ZZ) €o0,3 = €p,0 = 1,
iii) epp = (—1)z(B18),
i) €8,a€a,p = (71)(a|ﬁ).
Proof. 1) Let =3, B,y = > v a; € Q. Then using (1.12) we have

n n

S | (TR | ) (RIRE T
i,j=1 j=1 \i<j
n
1 (S ISR e
j=1 \i<j



ii) From point i) we get €08 = €y—n.3 = 4,56 —7,3 = (€4,8)% = 1.

iii) Let 8 = Y1, Bla; € Q, sothat (8]8) = Y, B'Cy 1 =2, (ZKJ- BiC; 37 + (ﬁj)Q),
where in the last equality we used the relations Cj; = C;; and Cj; = 2. Thus we

have

Do DBCuA + (5 Z%(ﬁIﬁ)
j=1 \i<j

for every 8 = >, '@; € Q. We now compute g 3. Using (1.11) and (1.12) we
obtain

n n
eps= [ Cara))® =T] | [T(-1)%% (1))
4,j=1 j=1 i<j

= (—1) T (Biey BiCuBi+(8))°) = (_1)2(B18)
iv) Replacing in iii) 8 with a + 3 and using (1.12) we get eg aca.p = (—1)(*1. O

1.3. Affine Kac—-Moody algebras. Let g be a simple Lie algebra, h C g a Cartan
subalgebra, and fix a nondegenerate invariant bilinear form (-|-) on g as in (1.6).
The untwisted affine Kac-Moody algebra g associated to the simple Lie algebra g
can be realized in terms of g as the space

a=g\\" o CK o Cd,
with the commutation relations
\N"'"®z @ aK ®bd,\" @y ®ad K & bd
= (A" @2,y —VmA" @z +bn A" @y) S mbm,—n(zy) K

where a,b,a’,b’ € C, m,n € Z and z,y € g. Note that K is a central element, while
d acts as the derivation A\dy. The Cartan subalgebra of g is the finite dimensional
subalgebra

h=haCK e Cd
Let {ez, fi,i € T} be Chevalley generators of g, as above, and for ¢ € I set é; = 1®e;
and fz = 1® f;. Moreover, let eg € gg (resp e_9p €Eg_p) bea h1ghest (resp. lowest)
root vector for g and set &g = A" ®e_g, fo=A®es. Puttmg I= {0,...,n}, then
{és, fi,i € I} is a set of generators for §. We denote by f the element f Dici fi.

2. OPERS

In this Section we review the concept of g-opers and some of its basic theory.
This is done in order to keep the paper as self-contained as possible and to fix the
notation; consequently we follow a basic and purely algebraic approach, suitable to
computations. For more details on the subject, including the geometric approach
and the extension to more general groups and algebras, the reader may consult
[16, 9, 23, 36] and references therein.

For any open and connected subset D of the Riemann sphere P!, we call Op the
ring of regular functions on D, and Kp the field of meromorphic functions on it.
Given a C vector space V, we denote V(Op) = Op ® V and V(Kp) = Kp® V,
namely the space of the regular/meromorphic functions on D with values in V.
Opers are, locally, equivalence classes of differential operators modulo Gauge trans-
formations. In this work we consider classes of meromorphic differential operators
modulo meromorphic Gauge transformations.
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The local operators under consideration belong to the classes op,(Kp),0py(Kp),
which we define below.

Definition 2.1. Let z be a local holomorphic coordinate on P! that identifies P!
with CU {oo}, and let £ be a differential operator in z. We say that £ belongs to
opg(KD) if it is of the form [9]:

L=0,+f+D (2.1)
for some b € by (Kp). We say that £ belongs to opy(Kp) if it is of the form
L=0.+Y vifi+b (2:2)
i=1

where b € by (Kp), and ¢, € Kp\{0},i=1,...,n

The local Gauge groups we consider are N (Kp), H(Kp), B(Kp), which we in-
troduce below together with their actions on op,(Kp),op,(Kp).

Definition 2.2. The unipotent Gauge group is the set
N(Kp) = {expy, y € n4(Kp)} (2.3)

with the natural group structure inherited from N. The (adjoint) action of N'(Kp)
on g(Kp) is defined as

1
exp(ady).gzzy(ady)kg, yeny(Kp), g € g(Kp).
k>0

The adjoint action of N(Kp) on 9, is expressed by Dynkin’s formula

1 dy
exXp (ady)az = GZ — E m(&dy)ka, Yy e n+(KD), (24)
k>0 ’

which is equivalent to N.0, = 0, — XN~ for N = expy.

Remark 2.3. Let us extend the algebra structure of ny (Kp) to the space ny (Kp)®
CO, by the formula [0,,y] = %. Then formula (2.4) for the action of expy on 9,
coincides with the adjoint action according to the bracket of the extended algebra.
Indeed,

oo

Ladi1py I e S
(ady) 9, =0, +Z ad, .] =0, Z(k+1)!adydz'

| —

>

1=0 k=0

~

Definition 2.4. We denote H(Kp) the abelian mutiplicative group generated by
elements of the form p* for ¢ € Kp \ {0} and X\ € PV, the co-weight lattice (1.2).
Since rank PV = n then H(Kp) is isomorphic to (Kp \ {0})" The (adjoint) action
of H(Kp) on g(Kp) is given by means of the root space decomposition (1.1): if
9=90+> nen 9o € 9(Kp), with go € h(Kp) and g, € go(Kp) then
Mg =go+ Y oW
aEA
The adjoint action of H(Kp) on the operator 9, is given by

/
©** 9, =0, — LA
2

Finally, the action of H(Kp) on n(Kp) induces an action on N'(Kp) as follows

(pad)\_expy:exp(wad)\_y), yeny(Kp), p € Kp\ {0}.

Definition 2.5. Given the above action of H(Kp) on N (Kp), we define B(Kp) =
H(Kp) x N(Kp) as the semidirect product induced by it.
10



Summing up the previous definitions, we can explicitly write the free action of
N(Kp) on opy(Kp) (and in particular on op,(Kp)) as

exp (ad y)(az + Z"/)ifi + b) =0, + Z %(ady)k(zi/)ifi + b)

k>0

1 dy
- ,; CESY (ady)* =7, (2.5)

with y € ny (Kp). Similarly, the action of H(Kp), and thus of B(Kp), on opy(Kp)
is given by:

o )\_(az + Zﬂhfz + b) =0, + Zcpfai(A)wifiJr

/
~Zavbo+ Y Vb, (2.6)
¥ aEA L
where b =bo + > ,en, ba, With by € h(Kp) and ba € ga(Kp). Formula (2.6) has
two immediate consequences:

(1) The only element in H(Kp) that leaves the set op,(Kp) invariant is the
identity

(2) For any choice of the functions v;, i € I, there is a unique element in
H(Kp) that maps £ € opy(Kp) to an operator in opy (K p); explicitly this
is Hj Y; (z)wjV where wjv, j € I, are the fundamental co-weights.

It follows from the above that there is a bijection between the sets of equivalence
classes op,(Kp)/N(Kp) and op,(Kp)/B(Kp).

Definition 2.6. Let D be an open, connected and simply-connected subset of P!.
The space of opers Op, (D) is defined as opy(Kp)/N(Kp) = opy(Kp)/B(Kp). We
denote by [£] the equivalence class (i.e. the oper) of the operator L.

Fixed a transversal space f + s, then each equivalence class of operators in
opy(Kp) admits a unique representative of the form 9, + f + s, with s € s(Kp)
The space of opers on a domain D of the Riemann sphere was essentially described
(in the holomorphic case) in [16]; in the sequel we need a slightly extended version
of that proposition, hence we review its proof too.

Definition 2.7. Let f+s a transversal space. Given the splitting by = [f,ny] s,
we denote ITy : by — [f,ny] and IL, : by — s the respective projections.

Proposition 2.8 (cf. Proposition 6.1 in [16]). Let f + s be a transversal space.
For every meromorphic differential operator L = 0, + f + b € opy(Kp), there
exists a unique meromorphic function s € s(Kp) and a unique Gauge transform
N € N(Kp) such that N.L = 0, + f + s. Furthermore, the set of singular points
of s is a subset of the set of singular points of b.

Proof. We first prove the existence of the pair N, s, and then its uniqueness. We
construct — by induction with respect to the principal gradation — the pair N, s
as N = Npv_1---Ni, with N; = expy® and y* € g/(Kp) and s = Zfzvl_l st
with &' € s'(Kp). Let £ = 8, + f +b € opy(Kp), and let b = 31" ' bi, with
b € g'(Kp). Introduce N; = expy' with y! € g*(Kp) and set £L; = N1£L. Due
to (2.5) then £; = 8, + f + b + [y}, f] + Z?:v;ll;i, for certain b* € g!'(Kp).
Note that v € h C [f,ny], and since Kerady is trivial on ny, we take y' to be
the unique solution of the equation b° + [y!, f] = 0, so that £; takes the form
11



Ly =0, + f+ Zf:vl_llaz Note that by construction y' has at most the same
singularities of b°, which is an element of £. Since £; is generated from £ by the
iterated adjoint action of y', then the set of singular points of £; is contained in the
set of singular point of £. Now fix j > 1 and assume we found elements N! = expn/,
I=1,...,7—1with n! € g/(Kp), as well as s' € s/(Kp), =1,...,7— 2 such that

j—2 hY -1
£j—1 Z:Nj_l---Nl.EzaZ—f—f-i-ZSl-i- Z Cl,
=1 l=5—1

for some ¢! € g/(Kp). Assume moreover that the set of singular points of £;_1 is
contained in Sp. Introduce N; = expy? with y/ € ¢g/(Kp) and set £L; = N;L;_1.
Using (2.5) we obtain

Jj—2 Y —1
Li=0.+f+> s+ fl+d 7+ > @,
1=1 1=j
for some ¢ € g/(Kp). We are interested in the term [y, f] + &~1. Recalling the
projection operators given in Definition 2.7, then we define s/ = I1,(¢'~!) € s7(Kp),
and we take 4/ to be the unique solution of the equation [y7, f] +¢&~! = 0. Such a
solution exists and is unique since (Kerady)|,, = 0. Then, £; takes the form

j—1 hY—1
,cjzaerZler Z .
I=1 I=j

By construction, ¢/ has at most the same singularities of &~!, which is an element
of £;_1. Since L; is generated by the action of 3/ on £;_1, the singular locus of £;
is a subset of the singular locus of £;_;. Iterating the above procedure, one obtains

elements N = Npv_1 ... Ny, with N; = expy’ and 3/ € g/(Kp), and s = 221—1 s
with s* € 5°(Kp), so that N.L = 8, + f + s, and the set of singular points of N.L
— namely the singular points of s — is contained in the set of singular points of L,
namely the singular points of b. Note incidentally that s? = 0 if i is not an exponent
of g.

The pair (N, s) constructed above is unique, because the action of A'(Kp) on
opg(KD) is free, and if two operators of the form 0, + f + s, 0. + f + s’, with
s,8 € s(Kp) are gauge equivalent then s = s’. We prove the latter statement
as follows. Let the two operators be Gauge equivalent, by the transformation
M = expm,m € ny(Kp), then m = 0. Indeed suppose m # 0 and let m® #
0,m; € g*(Kp) be the non-trivial term of m with lowest principal degree. Then
¢ (expm(d, + f +s) — 0, — f) has a non-trivial term of degree i — 1, namely [m’, f],
hence it is not zero. O

As a corollary we have the following characterisation of opers

Proposition 2.9. Let D be an open, connected, and simply connected subset of C.
After firing a transversal space s, the set Opy(D) can be identified with s(Kp).

Definition 2.10. We say that an operator £ € opy(Kp) is in canonical form if it
is of the form £ = 9, + f + s with s € §(Kp). We also say that L, = 0. + f + s
with s € 5(Kp) is the canonical form of any element of op, (K p) Gauge-equivalent
to it.

2.1. Change of coordinates - Global theory. The global theory of opers was

developed in [9, Section 3]; see also [23, Chapter 4] or [36, Section 6.1], which we

follow. Here we just address the simplest aspect of the global theory, that is the

coordinate transformation laws of opers. Let ¥ be a Riemann surface (we will be
12



interested here in the case ¥ = CP! only), and D a chart on ¥ with coordinate z.
Let £ € opy(Kp) be of the form

L=20,+ Zwi(z)fi +b(2).

If z = p(z) is a local change of coordinates we define the transformed operator of
L as

L? =0, + w’(z)(zw(w(w))fi +b(p(x))) - (2.7)

thus considering Bﬁg(K p) as a space of meromorphic connections on the trivial
bundle D x g — D. We note that if £ = expn(z).L then (£)¢ = expn(p(z)).L?,
which implies that the transformation law is compatible with quotienting by the
Gauge groups.

Hence, one can define a sheaf of (meromorphic) opers Op,(¥) on the Riemann
surface 3 as follows. For A a set, let {U,}aca be an open covering of charts
in ¥, with transition functions ¢, 3 whenever U, N Ug # 0, and let [L,] €
Opy(Ua) = opy(Ku,)/B(Ky,) a collection of local sections of opers. An oper
on X, namely an element on Opy(X), is then defined as {[L.],a € A}, with the
additional requirement that on each non-empty intersection U, N Ug we have that
[Lo] = [Eg“’ﬂ] € Op,(UaNUp), where Eg“’ﬂ is given by formula (2.7), with £ = Lg
and ¢ = @q,3.

Remark 2.11. For a given £ € opy(Kp), in general L belongs to op,(K,-1(p))

but not to opy(K,-1(p)). It is convenient to define, for any ¢, an element £ €
opy(K,-1(py) equivalent to £#. We make the following choice:

hY -1

L=y o=, +f - f;((””)) P S (@) () € opy(Komrm) -
=0
(2.8)

where we have decomposed b(z) = Zf:v(; ' bi(z) according to the principal grada-

tion. Hence [L¥] = [L] € Opy(K,-1(D))-

In the present work, we deal with meromorphic opers on the sphere Op, (PY),
whose space of global sections we characterise here. We cover P! by two charts
Up, Us with coordinates z,x and transition function z = % Suppose that we are
given an operator 0, + f+b(z) in op,(Up) and one operator dp+ f+b(z) in opg(Uso)-
These are local sections of the same global oper if and only if 0, + f + I;(x) is gauge
equivalent to the following operator

- 2V RY -1 1\t 1
£_8$+f——+§ —) Ve (2.9)

x X

Hence the operator 9, + f + b(z), defined locally on Up, can be extended to a
global meromorphic oper on the sphere if and only if b(z) admits a meromorphic
continuation at infinity, i.e. b(z) is a rational function. From this, it follows im-
mediately that the space of global sections of meromorphic opers on the Riemann
sphere Op, (K1) is isomorphic to 5(Kp1): an oper on the sphere is defined by the
choice of a transversal space and of n arbitrary rational functions.

13



3. SINGULARITIES OF OPERS

In this section we address the theory of regular and irregular singularities for
differential operators in op, (K p) as well as for opers in [£] € Op,(Kp). This theory
was already addressed in the opers literature, see [9, 23, 24] among others. Here
we both review known facts and include results from the literature of singularities
of connections, in particular from [2, 1]. We will always point out below whenever
our nomenclature deviates from the one commonly used in the opers literature.

Since we are both interested in single operators and in equivalence classes, we
need to distinguish properties which are Gauge invariant and properties which are
not. For example a singular point for an operator may be a regular point for a Gauge
equivalent one, because we allow singular (meromorphic) Gauge transformations.
Hence we start with the following

Definition 3.1. We say that a pole w of b € b¥(Kp) is a removable singularity
of the differential operator L =9, + f +b € opg(KD) if there exists N € N (Kp)
such that N.L is regular at w 2.

The theory of singular points begins with a dichotomy, the distinction between
regular and irregular singular point. In order to define it, we need to introduce the
concept of algebraic behaviour.

Definition 3.2. Let D be the punctured disc of centre w. We say that a, possibly
multivalued, function f: D — C™,n > 0 has algebraic behaviour at z = w if, fixed
a closed sector S of opening less than 27, the following estimate holds |f(z)| =
o(]z — w|®) for some a € R.

Definition 3.3. A singularity w € D of the operator £ = 0, + f +b € opy(Kp)
is called regular if the following property holds for every finite dimensional module
V of g: every local solution y : C — V of the linear equation £.y = 0 has algebraic
behaviour at w. A singular point that is not regular is named irregular.

The above definition is clearly Gauge invariant. It is in practice a notoriously
difficult task the one of establishing whether the singularity of a connection is
regular or not, see e.g. [2, Chapter 5|. However, this problem can be easily solved
for the class of operators belonging to op,(Kp), as we show in Proposition 3.10
below. To this aim we start by introducing the concept of slope of the singular
point [11], [24] 3.

Definition 3.4. Let £ = 0, + f + b € opy(Kp). Let w be a singularity of b €

by (Kp), and decompose b = Zgg 'bi according to the principal gradation of g,

with b° € g*(Kp). Let b'(z — w) ™%, with b’ € g and §; € Z, be the most singular
term of b’ in the Laurent expansion at z = w. Denote
0; - -
= max{1, max - , b= b;. 3.1
p = max{1, max ) > (31)

TFITH

We call p € Q the slope of the singularity w. The principal coefficient of the
singularity is defined as f —pY +bif p=1,and as f+ b if p > 1.

Definition 3.5. A pole w € D of b € b (Kp) is called a Fuchsian singular point
of L=0,+f+be opg(KD) if it has the slope p = 1. Equivalently, w is Fuchsian
if (z —w)**1bi(2) is analytic at w for all i.

20ther authors define a removable singularity a a regular singularity whose monodromy, in
the adjoint representation, is trivial. However, in order to remove such a singularity one needs to
consider meromorphic Gauge transformations which take values in the full adjoint group, see e.g.
Proposition 8.3 below
3For computational convenience, our slope is equal to the slope defined in [24] +1.
14



Definition 3.6. What happens at co? Let b’ € g°(Kp), and assume b'(z) =

O(2%)b' as z — oo. Define o = max; Z.iil. Letting 2 = £, we may choose as local

PRl
representative of [£] at oo, the differential operator (2.9). The slope of the latter
operator at = 0 (i.e. the slope of £ at 00) is max{1, 2+ pi }. Hence, we say that

the singularity at oo is Fuchsian if and only if po < —1.

Remark 3.7. The authors of [9] use a different nomenclature: Equivalence classes
of opers with a Fuchsian singularity, with respect to the action of Gauge transfor-
mations regular at w, are called (< 1)-singular opers. We prefer to use the name
Fuchsian, because in the case of sl,, opers, the definition coincides with the one of
Fuchsian scalar ODEs, see Corollary 3.12 below.

The reason for the previous definition comes form the following observation. Let
w be a singularity of £, with slope p. Introduce a branch of (z — w)*, and let Kp
be the finite extension of Kp obtained by adjoining (z —w)*. The Gauge transform
(z — w)**dr” € H(Kp) has the following action on L:

RV VS S VA e
oz w o (2w

+o((z —w)™H), (3.2)

where b is given by (3.1). If the singularity w is Fuchsian (namely if 4 = 1), then
L is locally Gauge equivalent to a differential operator with a first order pole. Its
associated connection is then Fuchsian (in the sense of connections) at w, hence
the singularity is regular. We can also establish a partial converse of the above
statement in case the function b takes values in any subset of f + b whose only
nilpotent is f; this is proved in the lemma below together with other results that
will be used in the sequel.

Lemma 3.8. (1) Let L = 0y + f +b € opy(Kp) and w a pole of b. If the
singularity w is Fuchsian then it is a reqular singularity.

(2) Let m C by a vector subspace of by that satisfies the following property:
f+m with m € m is nilpotent if and only if m = 0. Let L € opy(Kp) be
of the form 0, + f +m, with m € m(Kp) singular at w. The singularity at
w 1s regular if and only if it is Fuchsian.

(8) If L,L" € opy(Kp) are two Gauge equivalent operators with a Fuchsian
singularity at w, then the principal coefficient of L at w is conjugated in N
to the principal coefficient of L' at w.

(4) Let L € opy(Kp), w a pole of b, and p : g — End(V) be a non-trivial
irreducible representation of g such that all local solutions of the equation
L1 = 0 have algebraic growth. Then w is a regqular singularity.

Proof. We can assume w = 0.

(1) Due to (3.2), if 0 is Fuchsian then z#" £ has a simple pole at 0. Hence in
every representations every solution has algebraic growth, hence z = 0 is
regular.

(2) Because of (1), we just need to prove that not-Fuchsian implies irregular.
Suppose then that z = 0 is not Fuchsian, so that g > 1. Due to (3.2),
applying the gauge transform z#24 ?” to L then we get

Do +z27H(f+m) +o(z7") . (3.3)
where m € m is non-zero since g > 1 (cf. Definition 3.4). Since m # 0,
by hypothesis on m, we have that the principal coefficient f + m is not
nilpotent. It follows that, fixed the adjoint representation, the operator
(3.3) has a singularity with Poincaré rank greater than 1 and with a not-
nilpotent principal coefficient, hence the singularity is irregular. See e.g.
[44].
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(3) The proof is deferred to Lemma 6.4 (ii).
(4) After [2, Theorem 5.2|, the operator £ can be brought — by means of a
meromorphic Gauge transformation — into one of the two following forms:
(i) 0. +2 +0(271%), with A € g,
(ii) 9. + £ + O(z7"*¢) with r € Q, 7 > 1, and B € g is not nilpotent.
Let V be a non-trivial g-module. Assuming we are in case (i7), then the
matrix operator representing £ in V has a singularity at 0 of order r > 1
with a non nilpotent coefficient. It follows that in this case there exists at
least one solution with non-algebraic behaviour. Then, all solutions (in any
representation) are regular at 0 if and only if £ can be brought to the form
(7). But this implies that 0 is a regular singularity.

O

As shown in Lemma (3.8), the subspaces of f + b™ such that f is the only
nilpotent play an important role in the study of regular singularities for operators
in opy(Kp). Clearly f + b is one example of such subspaces. Other examples are
the transversal spaces f + s:

Proposition 3.9 (Kostant). Let f + s be a transversal space. Then f is the only
nilpotent element in f + 5.

Proof. The proof of Kostant [35] follows the steps: Any transversal space is in
bijection with regular orbits. The only nilpotent regular orbit is the principal
nilpotent orbit. Since f is principal nilpotent, it is the only nilpotent element in
the transversal space. (I

Combining the above lemma and proposition, we deduce that if an operator is
in its canonical form then a singularity is regular if and only if it is Fuchsian.

Proposition 3.10. Fiz a transversal space f + s and let L € opg(KD) be in
canonical form L =0, + f+ s, s € s(Kp). A point w € C is a regular singular
point of L if and only if it is a not-removable Fuchsian singular point.

Proof. Because of Proposition 3.9, s satisfies the hypothesis of Lemma 3.8(2), hence
for an oper in canonical form a singular point is regular if and only if is Fuchsian.
Moreover, since the singular locus of an operator in canonical form is a subset of
the singular locus of any operator Gauge equivalent to it, then a singularity of an
operator in canonical form cannot be removed. ([l

The above proposition has a two immediate corollaries. The first is a character-
isation of regular singularities for g opers.

Corollary 3.11. Fix a transversal space f + s, let L € opy(Kp) and Ls be its
canonical form. All reqular points of L are regular points of Ls, and all reqular
singular points of L are either regular points or not-removable Fuchsian singular
points of Ls.

Proof. Let N € N(Kp) be the Gauge transformation mapping £ to its canonical
form, namely £; = N.L. From Lemma 2.8 it follows that singular locus of NV
coincides with the singular locus of L. Therefore if w is a regular point of L, it is
also a regular point of N, hence of L;. If else w is a regular singular point of L,
then w is either a regular point of £, or a regular singular point of Lg; in the latter
case, by virtue of Proposition 3.10, w is a Fuchsian not-removable singularity. [

Another consequence is an algebraic proof of a well-known Theorem due to L.
Fuchs
16



Corollary 3.12 (Fuchs). Consider the scalar differential equation
Y™ (2) + as(2)y" P 4+ an(2)y(z) = 0.

The singular point w is a regular singular point for the scalar equation if and only
if (z —w)*ag(2) is analytic at z = w.

Proof. Let g = A,—1, let V = C" by the standard representation, and choose as
transversal space s the space of companion matrices. More precisely, s is the space of
traceless matrices whose coefficients are all zero outside the first row. We can then
choose a basis {s1, ..., sn—1} of s such that the scalar equation can be written in the
matrix form Ly = 0, where £ =0, + f + >, (—1)*ax11(2)sk. Suppose that w is a
regular singular point, namely all solutions have algebraic growth. Then by Lemma
3.8(4), w is a regular singular point of the operator £, and due to Proposition 3.10
it follows that w is a Fuchsian singularity if and only if (z — w)¥ax(2) = O(1), Vk.
Suppose now that (z — w)¥ay(z) = O(1), Vk. Then by Proposition 3.10 w is a
Fuchsian singularity of £ hence by Lemma 3.8(1) w is a regular singularity. O

4. QUANTUM g-KDV OPERS

In this rest of the paper, we develop the following program

(1) Following [20, 25], we introduce a class of g-opers %, for g simply laced, as
the largest class of opers which can provide solutions to the Bethe Ansatz
equations. We call them Quantum g-KdV Opers.

(2) We prove that these opers actually provide solutions of the Bethe Ansatz
equations.

(3) We characterise these opers explicitly by means of the solution of a fully
determined system of algebraic equations.

We recall that in the g = sls case, the above program was addressed and solved
in [8] by Bazhanov, Lukyanov, and Zamolodchikov. In this Section, following the
proposal of Feigin and Frenkel [20, Section 5] (see also [25, Section 8]), we introduce
the Quantum g-KdV opers in the case g is simply laced®, and we give to these opers
a first characterisation, which will be used to fully comply with the above program.

4.1. The ground state oper. The Quantum KdV opers are a suitable modifica-
tion of the simplest opers proposed [20, Section 5], which we studied in our previous
papers [41, 42] in collaboration with Daniele Valeri. These opers are expected to
correspond to the ground state of the model. Explicitly, they have the form

L(0,B) =0+ S+ = + @M — B)eo, (11)

for arbitrary ¢ €  and M > 0. As observed in [25], after the change of variable

A
z=<p(m)=< h_V ) x1-k (4.2)

the operator (4.1) is Gauge equivalent to

Lo(z,\) =0+ f+ r 4 1=k (1 + )\z_f“)e.g, (4.3)
z

4More precisely, of g—opers, where g is the untwisted affine Kac-Moody algebra associated to
the simply laced Lie algebra g, see below
5The not simply laced case is, at the time of writing, not yet fully understood.
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which is a form more convenient for the present work. In the above formula 0 <
k<1, A€ Cand r € b are defined by the relations

pY i A
(=——@r—p)+pY, M=—:r E<> A (4.4)

1—k 1—k hY

In order to avoid any ambiguity in the definition of the Quantum KdV opers, we
fix a transversal space s and consider the canonical form of the ground-state oper.

Proposition 4.1. The canonical form Lg s of the ground state oper (4.3) is

i

St T A A e (4.5)

n
Las(zA) =0+ f+)
i=1
where ¥ =Y, 74, with 7% € §% (Kp1), is the unique element in s such that the Lie
algebra elements f — pV +r and f — p¥ + 7 are conjugated.

Proof. The term ZA=hY (1 + )\z_k)eg is invariant under unipotent Gauge transfor-
mation. Hence, if £ is the canonical form of 9, + f + = then Lg s = L4 211 (1 +
)\z’k)Eg. The operator 0. + f + £ is regular in C* and has (at most) Fuchsian
singularities at z = 0,00. Due to Proposition 3.10, this implies that its canonical
form is regular in C* and has (at most) Fuchsian singularities at 0,00. Hence it
will take the form 0, + f+ >, Z;—dﬂ for some 7% € s%. From Lemma 3.8(2), the
principal coefficients at 0 of an operator and of its canonical form are conjugated.
Since the principal coefficient at 0 of (4.3) is f—pY +7r and that of (4.5) is f—p" +7,
we deduce the thesis. O

We notice here, as it will be important in the next Section, that in any finite
dimensional representation the element f — pY + 7 has the same spectrum as f —
pV + 7, which in turn has the same spectrum as —p¥ + 7.

Remark 4.2. The operator (4.3) is not meromorphic on the Riemann sphere, be-

cause the term Az~ ~Fe, is multi-valued. However, the element A=Y =ke, is
fixed by the action of the Gauge group N (Kp1), so that it prefectly makes sense to
study which properties of L& (2, ) are preserved under the action of the meromor-
phic Gauge groups. Schematically, we have:

opg(Kp1) /N (Kp1) + Az ey = {opy (Kp1) + )\z_f“eg}//\/'(Kw) .

The above comment is consistent with the following fact [25]. Recalling the affine
Lie algebra g introduced in Section 1, with d = AJ\ € § be the corresponding
derivation. Then the oper Lg(z,\) is Gauge equivalent, by means of the affine
Gauge transformation z#¢, to the affine (i.e. g-valued) meromorphic oper

r+ kd

9.+ [+ + 27 H ey, (4.6)
where f = D el fi is the sum of the negative Chevalley generators of §. In the

language of [36], the term % is the twist function of the quasi-canonical normal
form.

The construction of Bethe Ansatz solutions from Lg(z,\) can be briefly sum-
marised as follows. The oper L5(z, A) has two singular points, z = 0 and z = co.
The point z = 0 is a Fuchsian singularity with principal coefficient f — pV + r.
The point z = oo is an irregular singularity, with slope 1 + }%V and principal term
f + eg. The connection problem between the two singular points is encoded in the
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Q) functions, which we prove to be solutions of the Bethe Ansatz equation for the
quantum-g KdV model:

N (Q(j)(eiﬂC&jA*)
—2imB3;Cy;
jl;[,e QU) (e—iﬂ'cej )\*)

where A\* is a zero of Q) (). As it was recalled in the Introduction, the quantum
g—KdV model is specified by a choice of the vacuum parameter p € b and by the
central charge c. These determine uniquely the phases f3;’s of the Bethe Ansatz
equations, and the the order of growth u (that is, the asymptotic growth) of the
solutions Q("’s for large A, see [12]. At the level of the oper (4.5) the phases §;’s
turn out to be linear functions of the element r € b, and the growth-order is kh%
[12, 41]. Hence the residue at 0 and the slope at oo fixes uniquely the quantum
model.

The natural question is: can the oper Lg(z, A) be modified in such a way that it
still provides solutions of the same Bethe Ansatz equations, possibly corresponding
to higher states of the same quantum model? The answer is yes, as we show in the

sequel of the paper.

=-1, el (4.7)

4.2. Higher states. First considerations. Without losing generality, the most
general meromorphic deformation of the ground state oper can be written as

L(z,\) = Las(z, )+ s(2), (4.8)

where s(z) is an, a priori, arbitrary element of s(Kp:). We make four assumptions,
equivalent to the ones given in [20, Section 5] (see also [25, Section 8.5]), on the
above opers and we show that when these conditions are met solutions of the Bethe
Ansatz can be obtained. We thus say that a Quantum g-KdV oper is an oper of
the form (4.8), which satisfies the following assumptions:

Assumption 1. The local structure of the solutions at 0 does not depend on s(z).
Assumption 2. The local structure of the solutions at oo does not depend on s(z).

Assumption 3. All additional singular points are reqular and the corresponding
principal coefficients are conjugated to the element f — pV — 0V.

Assumption 4. All additional singular points have trivial monodromy for every
AreC.

Remark 4.3. These assumptions deserve a brief explanation. The solutions of the
Bethe Ansatz equations (4.7) are obtained from L by considering the connection
problem between an irregular singularity at co and a regular singularity at 0. More-
over, as recalled above, the phases 3;’s and the order of growth of their solutions
Qs are fixed uniquely by the residue at 0 and by the slope at co. It follows from
this that Assumptions 1 and 2 are necessary conditions to obtain solutions of the
same Bethe Ansatz equations by the methods developed in [41].

Concerning Assumption 4, if s # 0, then £(z,A\) has additional singularities,
and the connection problem from 0 to oo is only well defined if these additional
singularities have trivial monodromy. In fact, in case of non-trivial monodromy,
the connection problem depends on which path in the punctured C* one chooses
to connect 0 to oo.

We finally discuss Assumption 3. If we assume that the additional singularity is
regular, then the triviality of the monodromy (in any representation) implies that
the principal coefficient must be conjugated to f — p¥ + h, where h belongs to the
co-root lattice of g, see Proposition 5. According to [20], the choice h = —6V is, for
generic (r, l;:, a necessary condition for having trivial monodromy for any A € C,
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because if h is a co-root different from p" then the trivial monodromy condition is,
generically, an overdetermined system for the local coefficients the singularity. In
[8], following [17], the condition i = —# was shown to be strictly necessary in the
case g = sly, and for opers satisfying Assumptions 1 and 2.

We remark that, for the sake of the ODE/IM correspondence, the existence of
non-generic opers (i.e. with h # —6V) may be actually immaterial. In fact, if
the ODE/IM correspondence holds true, such non-generic opers, and Bethe Ansatz
solutions attached to them, will not presumably correspond to a state of the gen-
eralised quantum KdV model. The same remakr is valid also for the case of an
additional monodromy-free irregular singularity; moreover, we are not aware of any
result in the literature about this case and we will not pursue this possibility here.

We organize our analysis of Quantum KdV opers as follows. In the remaining
part of the present section we classify the canonical form of opers of type (4.8)
satisfying Assumption 1, 2 and 3. In Section 5 we construct solutions of the Bethe
Ansatz equations when the fourth postulate is met. In Section 6 we prove that the
canonical form of the quantum KdV opers is Gauge equivalent to a form where all
regular singularities are first order pole. The remaining sections of the paper are
devoted to the analysis of Assumption 4, and thus to the complete classification of
the Quantum-KdV opers.

4.3. The first three assumptions. We provide a more rigorous description of
Assumption 1 and 2 by means of the following definition.

Definition 4.4. Let £ be given by (4.8), for some s € s(Kp1). We say that s is
subdominant with respect to L s at 0 (resp. at oo) if the slope and the principal
coefficient of the singularities at 0 (resp. at co) of £ does not depend on s.

Lemma 4.5. Let s € s(Kp1), and write it as s = Y, s%, with s% € 5% (Kp).
Then s is subdominant with respect to Lg s at 0 if and only if

5% (2) = O(z~%), z 0, (4.9)
and it is subdominant with respect to Lg s at 0o if and only if
5%i(2) = O(z= %), Z > 00. (4.10)

Proof. The slope at 0 of Lg s is 1, thus s is subdominant at 0 if and only if
lim, 2% 's%(2) = 0 for all i = 1,...,n. The slope at co of L¢g is 1 + 7&.

Let s%(z) = O(27¢), as z — oco. Then (cf. Definition 3.6), s(z) is subdominant at
oo if and only if d-c-h >1-— }%V’ Vi. In other words ¢; > 7+ 1 — % Since ¢; € N

and 0 < d; < hY — 1, the latter inequality is satisfied if and only if ¢; > d; +1. O

The rational functions s% (z) satisfying the conditions of the above lemma can
be written using a partial fraction decomposition.

Lemma 4.6. Let f be a rational function such that
(i) 2'f(z) is regular at z = 0
(ii) 21 f(2) is reqular at z = oo
(iii) [ is regular in C\ {0,00} except for a finite (possibly empty) set of points
{wj,j € J}, where f has a pole of order m(j) > 1.
Then there exist x;(j) € C, with j € J and 0 <1 <m(j) — 1, such that

m(j)—1

HOEERD DS e _ful,(){zl(j)—z '
jeJ =0 7
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Proof. Let g(z) = z'f(z). By hypotheses (i),(ii) g has poles only at w;,j € I.
Since g(c0) = 0, we can represent g as a simple partial fraction without polynomial
terms: there exist 2;(j) € C, with j € J and 0 <1 < m(j) — 1, such that g(z) =

m(j)—1 x1(g
Zje] Zl:(é) (Z_w]l)% =

As a corollary, we can write explicitly the canonical form of an operator satisfying
Assumptions 1, 2 and 3.

Proposition 4.7. An operator L(z,\) of the form (4.8) satisfies Assumptions
1,2,3 if and only if there exists a (possibly empty) arbitrary finite collection of
non-zero mutually distinct complex numbers {w;}je; C C* and a collection s;ii ()
of arbitrary elements of s%, with 0 <1< d; and j € J, such that

_d.
e _RV _i
a1 A L+ Az egt

L(zN) =0+ f+)

. z
i=1
n ; d; sdl(j)
E § : _ Z ;
G wp) T 411
' jedJ i=1 : -0 (Z — wj)d.H»l,la ( )

where

o 7 =Y. 7% is the unique element in s such that the Lie algebra elements
f=pY+rand f—pY +7T are conjugated.

o The element 5 = ), sgi (j) is independent of j € J, and it is the unique
element in s such that f — p¥ — 0V and f — pY + 5 are conjugated.

Proof. Part of formula (4.11) was already obtained in Proposition 4.1, when con-
sidering the canonical form of the ground state oper Lz (z, A). Due to Lemma 4.6,
Assumptions 1,2 are satisfied if and only if the function s%(z) is of the form

. . m;(j)—1 S;il(])
s%(z) =z ZZ Z T wym T (4.12)
jeEJ 1=0 J

for some m(j) € N, and sld"' (j) € s%. For j € J, the principal coefficient of w
is given by f — pY + 5, where 5 = 3, s4'(j). Assumption 3 states that for every
j € J the additional singularity w; has to be regular, and its principal coefficient
f—pY +5 is conjugated to the element f — p¥ — 0. In particular, 5 in independent
of j € J. Due to Proposition 3.10, a singular point w for an oper in canonical form
is regular if and only if it is Fuchsian, form which it follows that in (4.12) we have
m;(j) = d; + 1 for every i, j, proving the proposition. O

5. CONSTRUCTING SOLUTIONS TO THE BETHE ANSATZ

In this section, adapting the techniques of [41], we construct solutions of the
Bethe Ansatz equations as coefficients of the central connection problem for opers
L of type (4.8) and satisfying Assumption 1, 2, 3 and 4. According to Proposition
4.7, we restrict our analysis to the subset of operators of the form (4.11) such that
all additional singularities {w;};cs have trivial monodromy. The latter condition
implies that all solutions ¥ of the differential equation £i) = 0 are meromorphic
functions on the universal cover of C*, whose (possible) singularities are pole sin-
gularities located at the lift of the points w;,j € J.

Definition 5.1. Let C be the universal cover of C*, minus the lift of the points
wj,j € J. If Vis a g-module, and fixed A € C, we consider solutions of L(z, A\){(z, \) =

0 as analytic functions (-, A) : CoV.
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Remark 5.2. For sake of notation simplicity, we assume a branch cut on the negative
real semi-axis and use the coordinate z of the base space for the first sheet of the
covering. Whenever we write f(e?"'2) we mean that we evaluate the function f on
the second sheet. This corresponds to the counter-clockwise analytic continuation
of the function f(z) along a simple Jordan curve encircling z = 0.

Definition 5.3. Let Oy denote the ring of entire functions of the variable . If V'
is a g-module, we denote by V(A) the set of solutions of £(z, M)y (z, A) = 0 which

are entire functions of A, i.e. they are analytic functions ¢p : C x C — V.

Lemma 5.4. V() is a free module over the ring Oy, and its rank is the dimension
of V. That is V(A) =V ®&c Oa.

Proof. In order to find an Oy-basis of solutions it is sufficient to find a set {1;(z, A), i =
1,...,dim V} of elements in V' (A) which is a C-basis of solutions of L(z, A)i(z, A) =

0 for every fixed A. Let then {¢;,i =1,...,dim V} be a basis of V. Fix a regular
point zg and let ¥;(z, ) be the solution of £ = 0 satisfying the Cauchy problem
i (20, \) = 1p; for all A € C. The solutions ¢;(z,\) € V(XA) because the differential
equation depends analytically on A, and are — by construction — a basis of V for
each fixed \.

For t € R, we define the following twisted operator and twisted solution:
Li(z,\) = L(e*'™2, 62””;)\) (5.1)
U (Z, /\) _ e2i7rtpv¢(627ritz, e27ritfc/\) (52)

Applying the change of variable formula (2.8) to (4.11), we have that

=d; ) v " n ) .
‘Ct(%}\) _ 8z+f+z z2i+1+6—27mtzl—h (1+>\Z—k)ee+z e2mit(dm+1) gdm (e2mtz) 7
[ m=1
(5.3)

where

o sim)
s (z) = z79m Z Z W. (5.4)

jEJ 1=0

By the same formula, it is straightforward to see that the twisted function ) (z, \)
is a solution of the twisted operator: L£!(z, A\)¢:(z,\) = 0. Note that when t = 1
then £1(z,\) = L(z, \), while in general 11 (2, \) is not equal to 1(z, \). We define
on V(A) the following Oy-linear operator, the monodromy operator:

MV =V,  M@)(z,\) = 2™ ez, e2mik)). (5.5)

Remark 5.5. Since L£(z,\) is a multivalued function of z, the monodromy operator
cannot be defined on solutions £(1(z)) = 0 for fixed A.

Remark 5.6. In the case of the ground state, we have
,dv
r o Vv i
‘CtG,s(ZvA) = azJFfWLZW +e 2 tzl h (1+>\Z k)eg.

Hence the the twist by ¢ is tantamount to a change ey — e 2"%ey, which in turn

can be interpreted as an automorphism of a Kac Moody algebra with a different
loop variable than A. This is the point of view that we used in our previous paper.
We drop this interpretation in the present work, for it cannot be simply extended
to the more general operators we are considering.
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5.1. The n fundamental modules. Let w; be the i—th fundamental weight of
the Lie algebra g, and denote by L(w;) the i—th fundamental representation of g.
Let the function p : I — Z/27Z be defined inductively as follows: p(1) = 0, and
p(j) = p(i) + 1 whenever C;; < 0 (i.e. p alternates on the Dynkin diagram). Note
that the principal coefficient at oo of (4.11) is given by f + ey, where f =3, ; f;
and f;, i € I, are fixed (negative) Chevalley generators of g. The highest root vector
ep is defined up to a scalar multiple, and the spectrum of the principal coefficient
f 4+ ep in L(w;) — hence the asymptotic behaviour of solutions £¢) = 0 — depends
on such a choice. We choose it according to the following Proposition.

Proposition 5.7. [41, Proposition 4.4] One can choose the element ey in such a
way that for every i € I the linear operator representing f + (—1)PPeg in L(w;) has
a unique eigenvalue NV with mazimal real part, which is furthermore real, positive,
and simple. In fact, the array of eigenvalues ()\(1), ., A can be characterised
as the Perron-Frobenius eigenvector of the incidence matric B = 21,, — C of the
Dynkin diagram of g:

ZBU)‘(J) = 2COS(h ))\(l) )\(1) = 1, Bij = 2(51',]‘ — Cij. (56)
J

Note that due to the definition of p(i), from (5.3) it follows that for i € I we
have

(i)

n —dm ) Y R
£ 0 14 3 S P T

+ Z ZZ p(z)g) Ydm A (5.7)

jeJ l=

Definition 5.8. Fixed ey as in Proposition 5.7 above, for each i € I we set V()
to be the Ox-module of solutions of the differential equation

L% (2 050 =0, (2, \) :Cx C — L(w,), (5.8)
where £%7 is given by (5.7).

5.2. The singularity at 0. In order to study the monodromy of solutions about
z = 0, we address the local behaviour of solution in a neighbourhood of the singular
point z = 0. Applying formula (4.11) to (5.7), we have that

f=p T
z

e e B g, + (—1)PDegrz=F + 0(1), (5.9)

where 7 = ). 7di. Hence, z = 0 is a Fuchsian singular point, and the principal
coefficient f — p¥ + 7 is independent on the sign p(7).

We remark again that the singularity at 0 is also a ramification point of the
potential. If k is rational, then the operator £ can be made single-valued by a
change of variable, and the standard Frobenius method applies. This is the case we
considered in [41]. If k is irrational then the operator cannot be made single-valued
by a change of variables. Therefore the standard theorems on Frobenius series do
not apply. We develop below an appropriate modification of the Frobenius method
in the case k is irrational and satisfies a genericity assumption that implies that
no logarithms are present in the local expansion at 0. Filling this gap, we also
complete our previous works.

The local behaviour of the solutions at 0 depends on the spectrum of f — p¥ + 7
in the representation we are considering. As we remarked earlier this element is
conjugated to f — pV + r, which has the same spectrum as r — p¥ € h. Recall the
weight lattice P introduced in (1.2). If P,, C P denotes the set of weights of the
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representation L(w;), then the spectrum of f — p¥ + 7 in this representation is the
set {w(r — pY),w € P,,}. In order to proceed, we need to consider separately the
case when k € (0,1) is rational and the case when it is irrational. First, we have

Definition 5.9. Let ¢ € I, and let P,, C P be the weights of the fundamental
representation L(w;). Moreover, put T = {a = n + mk : n,m € Z, (n,m) #
(0,0)} c C.

If k is irrational then the pair (r, lgz) € h x (0,1) is said to be generic if for every
i € I and for every w € P,,, the spectrum of the matrix representing r—pV —w(r—p")
is contained in C\ T.

If k then k = %, with ¢ > p € N. We say that the pair (r,k) € b x (0,1) is
generic if for any w € P,,,, the spectrum of the matrix q(r — p¥) — qw(r — p¥) does
not belong to N* (the set of positive natural numbers).

We have the following result.

Proposition 5.10. Let (r, if) € hx(0,1) be a generic pair. Let (w(r — pv),xw) be
an eigenpair composed of an eigenvalue and a corresponding eigenvector of f—pV +7
in L(w;). A unique solution x,(z,A\) in Vi()\) is determined by the expansion

Xw(z,A) = zfpvzf‘”(rfpv)F(z, /\szc), (5.10)

where F(z,w) is an L(w;)—valued analytic function in a neighbourhood of (0,0)

such that lim, o F(z, \27%) = x.

Proof. For the case of k irrational the proof is in the Appendix.

The case of a rational k was proven in [41, Section 5]. We skecth here the proof.
Applying the transformation (2.7) with z = ¢(z) = 2? to the operator 2L
(5.9), one obtains

L=0,4q

f_rx_ Pv) +b(£€) )

where b € by (Kp1) is regular at 0. The latter differential operator admits the
convergent, Frobenius solution

)f(\;(x, )\) = x_qw(’l‘—p\/) (XUJ + Z G/JZCJ)
j>1
for any eigenpair (w(r — p¥), xw) of f+ 7 — p") provided the genericity condition
is satisfied. Hence the equation ng = 0 admits the solution
Xeo(2:X) = 277 X2, 0) = 27 270 (0, + " ay2)

jz1
Moreover, a closer inspection of the series x., + 221 ajz% shows that it is of the
required form; see [41] for details. O

A direct computation shows that the solution x,(z,\) of Proposition 5.10 is
an eigenfunction of the monodromy operator (5.5). It follows from this that if
r+pY — f is semi-simple (i.e. diagonalizable) then solutions of the form (5.10) are
an eigenbasis of the monodromy operator in the module V¢(\), for i € I. More
precisely, we have:

Corollary 5.11. Let (r, ]Af) be a generic pair, and x,(\, z) be the solution con-
structed in Proposition 5.10. Then

M(Xw)(sz) _ eQm’p\/XW (627”'27627”'15)\) _ e%ﬂ'w(pv_r)xw (2,7)\)7 (5'11)

which means that x.,(z,A) is an eigenfunction of the monodromy operator.
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Let moreover f—pY+7 be semisimple, and {Xw}wepwi — taking into consideration
weight multiplicities — be a basis of L(w;) made of eigenvectors of f —p¥ +7. Then

{Xw(z: A }wep,, is a Ox-basis of V().

Proof. The first part of the Lemma is a direct consequence of the Proposition. If
f — pY + 7 is semisimple, then it admits a basis of eigenvectors x,,w € P,,. It
follows that {xw(2,A)}wep,, is a C basis of solutions for each fixed A, and hence a
Ox-basis of Vi(N). O

We finally consider the transformation of solutions of type (5.10) under Gauge
transformations. These results will be useul later, to show that the Q-functions
(which satisfy the Bethe Ansatz) are Gauge invariant. In other words the Q-
functions are properties of the opers, and not just of the single differential operators.

Let y € ny (Kp1), so that exp(y) € N (Kp1), and denote L = exp(ad y).ﬁpg) )

_ . sp() _ . .
and X, = exp(y).Xw- By construction we have L7z ¥, = 0, and since y is mero-
morphic, applying the monodromy operator (5.5) on ¥, and using (5.11) we get
M (Xo) = e~ 2™ (r=p") 5. Thus, solutions of type (5.10) satisfy the relation

M(exp(y).-xw) = exp(y).-M (xw), Y € ny(Kp).

In addition, if {xw(2, A) }wer,, is a Ox-basis of solutions for the equation L%i)q/) =
0 (namely, a basis for the Oy-module V()\)? introduced in Definition 5.8), then
{exp(y)-Xw (2, A) fwer,, is a Ox-basis of solutions for the equation E_p(Tl)w =0.

5.3. The singularity at co. Now we move to the analysis of the irregular singu-
larity at co. In order to compute the asymptotic behaviour of solutions around oo,
we define the function ¢(z, \) as the truncated Puiseaux series that coincides with

v f L
(z'7"" (1 + AXz7%)) " up to a remainder o(z~!):

g A
q(z,A) = zﬁlv_l(l + Z a2k (5.12)
=1

Here ¢; are the coefficients of the McLaurin expansion of (1 — w)ﬁ1v 6. If we apply
the Gauge transformation ¢(z,A)~ 247" to the operator (5.7) we obtain

(2, 0) 720" L5 (2 0) = 0. + (2, VAT + O(z7179) (5.13)
where A* = f + (—1)?Wey is (the image in the evaluation representation of) the
cyclic element of the Kac-Moody algebra g, and ¢ a positive real number.

The transformed operator (5.13) has Poincaré rank ;%v with semi-simple prin-
cipal coefficient A?, and a pertubration which is integrable at co. It follows that
the dominant part of the asymptotic expansion of the solutions near oo is fully
characterised by the spectrum of the principal coefficient [44]. In particular, the
subdominant behaviour as z — 400 is dictated by the eigenvector with maximal
real part. Indeed, we have the following proposition which is adapted from [41,
Theorem 3.4].

Proposition 5.12. Let ¥ € L(w;) be an eigenvector of f + (—1)PWeq with the
mazimal eigenvalue X, as defined in Proposition 5.7.
(1) For every A € C there exists a unique solution W) (2, \) such that

B (2, 0) = e SEN gz 0 (50 +0(1)) (5.14)

6We remark that in the physical literature [8] the condition kh% < 1, corresponding to g(z, \) =

J DU S . . .
2z 1T 7Y is called the semiclassical region of parameters.
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as z — +oo, where S(z,\) = [* q(w, \)dw.
(2) For any X € C, if 1/)( ,A) 1 C — L(w;) is a solution of E%Z)w = 0 then
TD(2,0) = 0((2,A)) as z — 0o unless 1h(z,\) = C¥D(z,\) for a C € C.
(8) W@ (z,\) € Vz(/\), i.e. it depends analytically on A.

Proof. Tt follows from (5.13) and Proposition 5.7. The detailed proof can be found
in [41, Theorem 3.4]. O

By means of the characterization given in Theorem 5.12(2) above, we can define
the subdominant solution ¥ for any choice operator Gauge equivalent to £

Let exp(y) € N(Kp1), and denote £z &= = exp(ady).LZ . Then there is a unique

up to a scalar mutliple) so ution U’ (z of £© = elonging to V*(\), an
1 liple) solution T (2, A) of £ 4 = 0, bel Vi()), and

satisfying Theorem 5.12(2). This is indeed exp(y)¥?(z, \).

5.4. The WU-system. The next, and main algebraic step, towards constructing
solutions of the Bethe Ansatz equations is the U-system, derived in [41], which the
reader should consult for all details.

Fix i € I, and recall the definition of the incidence matrix B = 21,, — C. Then
consider the g—modules A L(w;) and ®jer L(w;)®Pii. These are, in general, not
isomorphic. However, they have the same highest weight 7, = > y Bijw; and if we
denote by 1, a vector of L(w;) with weight w € P,,,, then the highest weight vector
of \* L(w;) is ¥, A 1w, —a,, while the highest weight vector of &,er Llw &P is
X el wfiB”. Hence, for every i € I, we have a well-defined homomorphisms of
representations

2
mi: \ L(wi) = @ Lw)®P9 , mi(tu, Au,—a,) = QuEP,  (5.15)

Jjel jeI
uniquely defined by requiring that it annihilates the (possibly trivial) submodule
U; € \* L(w;) such that A* L(w;) = L(n;) ® U;.
Proposition 5.13. Let U()(2, \) be the sub-dominant solution defined in Propo-
sition 5.12, and \Il(f) (z,A) the same solution, twisted according to formula (5.2).

We can choose a normalisation of the solutions W) (z, \)’s in such a way that the
following set of identities — known as V—system — holds true:

mi (U9 (2, ) AP (2,0)) = @, 0D (2, )EP | iel, (5.16)
2 2
where m; is the morphism of g modules defined in (5.15).
Proof. Tt follows from Proposition 5.12. See [41, Theorem 3.6] for details. O

5.5. The Q@ system and the Bethe Ansatz. We are now in the position of
proving the Q@ system, which implies the Bethe Ansatz equations. We suppose
that r € § is generic with respect to k and f+7r—pY is semisimple, so that, after
Corollary 5.11, the set {x., (2, A)}wep,, is a Ox-basis of V(X)) (weight-multiplicity
is considered). Therefore we have the following decomposition

VO, 0) = > QuMxw(zN), i€l (5.17)

weP,,;

where the coefficients Q,,(\) are entire functions of A. Note that w; has mutlipliicty
1, as well as any weight of the form o(w;) for all o € W, where W is the Weyl group
of g; in particular the weight w; — a; belongs to the W orbit of w;. B
We show that, as a direct consequence of the W-system, they satisfy the QQ-
system and thus the Bethe Ansatz equations.
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Since after a Gauge transformation N = €21 y € nt(Kp1), the solution ¥
and the solutions ., transforms as vectors, namely W) — ¥ W@ v — e¥y,,, it
follows immediately that the entire functions Q. (A\), w € P,,,i € I are invariant
under Gauge transformations. This shows that the solutions of the Bethe Ansatz
equations we construct are not just a properties of the operator £ € OPg (KPI), but
of the oper [£] € Op,(P').

Theorem 5.14. Suppose that the pair (r, l%) € b x (0,1) is generic, and f+1 — p¥
is semisimple, so that the decomposition (5.17) holds. Fiz an arbitrary element o
of the Weyl group W of g, and for every £ € I denote QSf’ = Qo(w,) and QSf’ =
Qa(wg—ag)'

One can normalise the solutions Xo(w,)s Xo(we—as): £ € I so that the following

identity — known as Q@—system — holds for every ¢ € T
) Byj . o~ -
[1(Q9W) " =em Qe QW (e
Jjel
— e QU (e FNQY (TN, (5.18)
where 0y = o(ag)(r — pY).

Proof. Tt is a straightforward computation: plug the decomposition (5.17) and the
expansion (5.10) into the U-system (5.16). O

Remark 5.15. The Q@fsystem, first obtained in [41, 42], was shown in [25] to be
a universal system of relations in the commutative Grothendieck ring Ko (O) of the
category O of representations of the Borel subalgebra of the quantum affine algebra

Uq(9)-
The Bethe Ansatz equation is a straightforward corollary of the Q@ system.

Corollary 5.16. Let (r,/%) be a generic pair. Let us assume that the functions

Qgi)()\) and @g)()\) do not have common zeros. For any zero \f of QW (N\), the
following system of identities — known as g-Bethe Ansatz — holds

no QY ()
H 672171'[3]‘0@]' ( ) - = -1 , (519)
o D

with B; = o(w;)(r — p¥).

Remark 5.17. What happens when (r,/%) is a non-generic pair? In that case in
general the monodromy operator is not diagonalizable. Hence we can define the
Q" functions only for o’s belonging to a proper subset of W [41, 42]. The same
phenomenon occurs also at the level of the quantum KdV model: for some values
of (r, k) not all Q functions can be defined. Hence the ODE/IM correspondence is
expected to hold also for non-generic values of the parameters.

6. EXTENDED MIURA MAP FOR REGULAR SINGULARITIES

Due to Proposition 4.7, a g-oper £(z, A) of type (4.8) satisying Assumptions 1,2,3
takes the form (4.11). We decompose L as

L(z,\) = Lo(2,A) + 27" 1L + A2 F)ey,
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where

n _d. n d; di -
_ r —d; S (J)
Lo(2, M) =0+ f+)Y g+ = (o =) de T (6.1)
i=1 jeJ i=1 1=0 J

and the coefficients 7%, sfli (7) € s% satisfy the conditions of Proposition 4.7. The
operator 6.1 is regular outside the Fuchsian singularities 0,00, and w;, j € J. In
this section we address the question of whether the operator Ls is Gauge equivalent
to an operator such that all additional singularities w;, j € J are first order poles.
In Theorem 6.21 below, we answer positively to this question, showing that L is
Gauge equivalent to

hY -1

r 1 X(5)

El_az+f+z+;szj; gt (6.2)
where r € h and X%(j) € g°. More precisely, we prove that L is the canonical
form of £; and the induced map from the space of operators (6.2) to the space of
operators (6.1) is surjective, and — modulo a (dotted) Weyl group action — injective.
Since 2~ "*+1(1+ Az~F)ey in invariant under A'(Kp: ), it follows that the Quantum

KdV opers can be uniquely written as
L(z,N) = L1(2,A) + 27" L1+ Az 7F)ep. (6.3)

The choice of the above form is motivated by the Bethe Ansatz equations. Indeed,
according to Assumption 4 in order to construct solutions of the Bethe Ansatz equa-
tions, we need to impose on the additional singularities w; the trivial-monodromy
conditions, which will result in a complete set of algebraic equations for the coeffi-
cients of the operator. Even though the location of the poles is independent of the
choice of the Gauge, all local coefficients of course do depend on this choice. For
theoretical and practical reasons we have chosen to work in the Gauge where all
additional singularities are first order poles. Indeed, this Gauge does not depend
on the choice of a transversal space, and the computation of the trivial monodromy
conditions turns out to be much simpler. The computation of the monodromy at
z = wj for opers of type (6.3) will be made in Section 9, where we will also show
that the coefficients X*(j) € g° actually take values in the (symplectic) vector space
t C by, which can be described as the orthogonal complement (with respect to the
Killing form) of the subspace Kerade_g, where e_g is a lowest root vector of g.

Remark 6.1. Applying 2#" to L1, we obtain

\v
po_g Ll ,
2P Ly >+ 2 +Z¥z—wj

The (connection asssociated to the) above operator is totally Fuchsian: it is mero-
morphic on the Riemann sphere and all its singularities are first order poles. Hence,
we can conclude that L£; is Gauge equivalent to a totally fuchsian operator. We
remark that the analysis of the similar question, namely whether a connection with
only regular singularities is Gauge equivalent to a connection with only simple poles
(i.e. a Fuchsian connection), is of primary importance in the theory of the Riemann-
Hilbert problems and led to the negative solution of the Hilbert’s 21st problem, see

[1].

6.1. Local theory of a Fuchsian singularity. The operator L; given by (6.1)
is fixed by the choice of the coefficients

si(j)eC,  0<i<d;iel, (6.4)
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namely by the choice of the singular coefficients of the Laurent expansion at any
w;. Similarly, the operator £, given by (6.2) is fixed by the choice of

X'(j)eg, i=0...hY -1 (6.5)

Since the canonical form of £ is Lg, then the Gauge sending £; to L4 induces a
map from the parameters (6.5) to the parameters (6.4). This map is the object of
our study. Our method of analysis is based on the reduction of the global problem
to a simpler local one. This is the problem of proving that an operator of the form

RY—1 4 i
_ l
ool X3
1= =

with given X ; € g°, is Gauge equivalent to an operator with a first order pole

hY -1 i
L=20 —
R
1=0
for some X* € g*. In order to do so, we describe the local structure of both operators

and Gauge transformations at a Fuchsian singular point. We first embed the space
opy(Kp) into a Lie algebra and then proceed with the localization.

Definition 6.2. Let D be a domain in C. We denote
9'(Kp) = 8(Kp) & Co.
the extension of g(Kp) by the element 0., with the relation [0,, p(z)] = %.
It is clear that we have an injective map op,(Kp) < ¢'(Kp).

Definition 6.3. Let w € C and set x = z — w. We denote

g'((z)) = g @ C((x)) ® CO, (6.6)
the Lie algebra defined by the relations
(91 @ 2™, go @ 2F) = [g1, go] @ 2™ P, [Op, g @ 2™] = g @ ma™ !

for g1,92,9 € g and m,p € Z.

The interpret the Lie algebra (6.6) as a localized version (at the point x = z — w)
of operators in g'(Kp), and in particular of operators in op,(Kp). To make this
statement more precise, we assign two different degrees for elements in g’((x)): the
principal degree, given by

degd, =0, degg'®al =i, g'eg,
and the total degree, given by
degy 0, = —1, degyg' @2l =i+j, g¢' g

For every k € Z, we denote g=*((x)) C g’((x)) the subspace generated by elements
with total degree greater than or equal to k. We also define the localized Gauge
groups as

Nioe = {expy : y € ny @ C((2))},

Nige = {expy: y € ny @ C((2) N g>°((2))}-

For w € D, the localization map
Locy, : ¢'(Kp) — ¢'((x)),

is defined by setting Loc,(0;) = 0y, and Loc,(g) to be the Laurent series at
w of g € g(Kp). Fixed w € D the above map is an injective morphism of Lie

algebras. We denote Loc(g) as g, for g € ¢'(Kp). By definition, if we localise
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L € opy(Kp) at a point w we obtain an element L,, of g'((x)), and if we localise a
Gauge transformation Y € N (Kp) at a point w we obtain an element Y, of M.
Since the localisation map is a morphism then (Y.£),, = Y,,.Ly.

Lemma 6.4. (1) Let L € opy(Kp). Then w € D is a Fuchsian singularity
of L if and only if (L)w € 92" (). If w is Fuchsian and Ls = Y.L is
the canonical form of L, with Y € N (Kp), then the localisation of Y at w

belongs to ./\/lfco
(2) If E,E € opg(KD) are Gauge equivalent operators with a Fuchsian singu-
larity at w, then the principal coefficients of the singularity are conjugated

in N.

Proof. (1) Let £ = 0, + f +b € opy(Kp). By definition of Fuchsian singularity,
then z = w is Fuchsian if and only if

L)y =0 bl

(Ow=0:+F+ > —f0

i>0,m>0

for some bi, € g'. But since each summand has total degree > —1, this is precisely
the condition that (£),, € g=~'((z)). Now let w be a Fuchsian singularity for £,
and let £; = YL be the canonical form of £, for some Y € N(KD) We want
to prove that V,, € N. Since w is Fuchsian for £ then (L), € g=~'((z)), and
due to Corollary 3.11 w is Fuchsian also for L, so that (L£s), € g2 1((z)). Note
that by construction we have Y,,L,, = (Yﬁ)w = (L), from which we infer that
YuLly € g>*1(( ). We prove that V,, € N0 by showing that if £ € g=~*((z)),
and Y ¢ loc, then YL ¢ g=~!. Indeed, let Y = expy with y € n (Kp). Since
Y ¢ /\/l there exists a maximal & > 0 such that the projection of y into the
subspace of total degree —k is non zero. Let then I?%, with 0 # y* € g° be the
term of y of total degree —k and of lowest principal degree i. Then the projection

oc?

of expy.L onto the subspace of total degree —k — 1 is non trivial, as [f, #] #0
is the unique term in expy.L with total degree —k — 1 and principal degree i — 1.
Hence, YL ¢ g=~ 1.

(2) It is enough to prove the statement when £ = L, is the canonical form of L.
Let Y € N(Kp) be the Gauge transformation such that £, = Y L. Since w is Fuch-
sian, then due to part (1) we have that Y, €
that 2°4°"Y,, is regular at z = 0. In other words, 247" Y,, = exp (Zkzo yra®), for
some yr € nT. Again using the fact that w is Fuchsian, we obtain (cf. equation
(3.2)) that 2247 L, = 9, + 2 +0(1) and 2P (L) = Oy + b+ 0(1), where
a,b € g are the principal coefficients of £ and L respectively. Since (Ls)y = Yo Ly
and 279°"Y,, is regular at x = 0, we obtain the relation b = exp yg.a. O

loc , and a direct calculation shows

We now introduce three important classes of operators in g=~!((z)).

Definition 6.5. We say that £ is a g-Bessel (or simply a Bessel) operator if

hY—-1 i
L=0u+f+ Y Y —— ml, Xieg' (6.7)
=0 [=0

Given a transversal space s, we say that £ is a s-Bessel operator if

L=0, +f+zzxd+1 I si e s, (6.8)

=1 =0
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We denote by V' = V; the affine vector space of s—Bessel operators. We say that £
is a 1-Bessel operator if

X
5:81+f+;, X eb,. (6.9)
We denote by U the affine vector space of 1-Bessel operators.

In the case g = sly, Bessel operators coincide with the operators of the Bessel
differential equation. As shown below, the canonical form of every Bessel operator
is an s-Bessel operator.

Lemma 6.6. Any Bessel operator (6.7) is Gauge equivalent to an s-Bessel operator
(6.8). The corresponding Gauge transformation belongs to the finite dimensional
subgroup Noe C /\[l%cO generated by elements in ny((x)) without regular terms

RY—1 4 i
Nloc:{expy Y= Z Zx_;ay;EQZ}
i=1 j=1
Proof. A simple computation shows that the set of Bessel operators is invariant
under the action of the group ANj,.. We can then prove the Legma using the
same steps as in the proof of Proposition 2.8. We factorize Y € Ny, as follows:

Y =Y,v_2...V1Yy where Y; = thvfl ) ..ijH and Y} = exp Yi for some yheg'.

zi—J

Yj

The transformation YJZ = exp ;%7 is then defined by recursively imposing that, after
its application, the terms of the resulting operator with total degree < j — 1 and

principal degree < i — 1 are in canonical form. (I

Due to the previous lemma, we have a well-defined map from Bessel operators
to s-Bessel operators. We are interested in the restriction of this map to the class
of 1-Bessel operators. Note that once further restricted to the class of 1-Bessel
operators of the form 0, + f + X°/z, with X% € g° = b, then this map should be
thought as a local version, at a regular singular point, of the so-called "Miura map’.
Bessel operators will play a prominent role later in this section, to obtain a normal
form for Quantum g—KdV opers.

The space U of 1-Bessel operators (6.9) can be described by means of the graded

affine space
hY —1

U= v,
=0

where

Up= {0, + f+27'X°| X% € p}, U=z"1g", i>0.
Note that deg, U; = i —1. In the sequel we will often identify U; with g° and ®;>1U;
with nt. Similarly, the space V of s-Bessel operators (6.8) can be written as -

hY -1
V=P,
i=0
where

Vo={0:+Ff+)
=1

Sdi d. d. de d.: d: .
xd¢+1|51€51}’ %:{ZW|SJ€5J}’ i > 0.
d;>i

Note that degy V; =i — 1.

Lemma 6.7. The space U of 1-Bessel operators and the space V of s-Bessel op-
erators have the same dimension. More precisely, dimU = dimV = dimby =

(% + )n.
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Proof. It is clear that U ~ b™, so in particular dimU = dim b, = (% + 1)n. We
prove by induction on ¢ that U; and V; have the same dimension. First, Uy = h
and Vo &2 5, so dimUy = dimh = n = dims = dim V. Then, it is clear from
the definition of V? that dim V? = dim V**! 4 dim s’, where s° = s N g°, and by
definition of transversal space we have dim s’ = dim g* — dim g**!. Since U’ ~ ¢,
then we have dim V? —dim V! = dim s’ = dim g’ — dim g**! = dim U? —dim U***.
Hence dim U? = dim V* implies dim U*T! = dim V**!. O

Definition 6.8. We denote as ® : U — V be the map that associates to any
1—Bessel operator its canonical form. We define ®; as the projection of ® onto V;,
so that the decomposition ® = @®;P; holds true.

Remark 6.9. Let L =0, + f + 2 'X € U be a 1—Bessel operator, with X € b,.
Let X =3, X ¢ be the decomposition of X according to the principal gradation,

with X7 € g¢. By abuse of notation, we write ®(X°,..., X""~1) to denote ®(L).

After Lemma 6.6, the Gauge transformation N mapping a 1—Bessel operator to
its canonical form belongs to AVj... In particular, Y = expy with y € g=°, that is a
linear combination of terms of non-negative total degree. It follows form this that,
for each 4, the map ®; depends only on @©;<;U;. More precisely, we have

Lemma 6.10. Let L =0, + f + 271X € U, with X € by, be a 1-Bessel operator,
and let X =3, X, with X* € g*. The map ® : U — V which associates to L
its canonical form L. admits the triangular decomposition:

hY -1
(X0, XM =3 aX0. XY, @ @PU; - Vi (6.10)
i=0 §<i

In other words, the terms of total degree i — 1 in Ly depend on the terms of total
degree < i —1 of L only.

Proof. We prove the following equivalent statement: if £ = £’ up to terms of total
order < ¢ — 1, then the canonical form of £ coincides up to terms of total order
< ¢ — 1 with the canonical form of £'.

Let £ be a 1-Bessel operator and Y = Y;,v_5...Yy be the corresponding Gauge
transformation — factorized as in the proof of Lemma 6.6 — mapping £ to its canon-
ical form Ls. If £’ coincides with £ for terms of total degree < i — 1, then the
terms of total degree < ¢ — 1 of Y;...YpL and Y;...YyL are also the same. By
construction, Y;...YyL coincides with its canonical form L£; up to terms of total
degree < ¢ — 1. It follows that Y; ... YL’ is in canonical form except that for terms
of total degree > 7. Hence, the transformation Y’ mapping £’ to its canonical form
can be factorised as Y' =Y}, _,... Y/ Yi... Yo where Y = expy;, with j >i+1,
and degy y; = j. It follows that Y;...YyL coincides with the canonical form of £’
up to terms of total degree <i — 1. O

6.2. The maps ®;,i > 0. In order to study the properties (in particular the sur-
jectivity) of the map ®, we first study the map ®g, and then the maps ®;,7 > 1.
We begin with the following

Lemma 6.11. Let f + s a transversal space and h € ) an element of the Cartan
subalgebra. Then f+ h +s is a transversal space too.

Proof. Since s is transversal, every b € b, can be written as b = [f, m]+ s, for some

m € ny and s € 5. We prove that there exists an y € n™ such that b = [f, y] +h+s.

Since ad flg1 : g! — b is invertible, we denote by g € g' the unique element such

that [f,g] = h. Setting y = m — g, then b = [f,y] + h + s. O
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We next prove that the map ®¢ : Uy = h — V) = 5 is surjective and it is invariant
under the shifted Weyl group W action on h. The latter is defined as
o-h=a(h—pY)+p", (6.11)
forceWandheh’.

Lemma 6.12. Let Lo = 0, + f + 271 X be a 1-Bessel operator, with X° € b, and
fix a trasversal subspace s. Let (s,y0) € § X ny be the unique pair of elements such
that exp(yo).(f —p¥ + X°) = f —pY +s.

(1) The canonical form of Ly is

sdi
Lo=0ut [+~
i=1

where s% € s% is the restriction of s to 5% . _
(2) Let yo = >, yb, with yy € ¢, and let Yy = expziz—é € Nipe. Then

Ls =Yy.Lo. In particular, degy ), % =0.
(3) The map

®o:Up=h—=Vo,  Po(X°) =35

18 surjective.

(4) @o(h) = ®o(R') if and only if there exists 0 € W such that o - h = h'.

Proof. A proof of (1) and (2) is already contained in the proof of Proposition 4.1.
We give here another proof, more algebraic in nature. Fix X° € b and consider the
operator £ =0, + f+x"1X°. Since f — p¥ 45 is a transversal space then the map
N x{f—p"+s5} = f+bT, (Y,s) = Y.(f — p¥ + s) is an isomorphism of affine
varieties [35]; in particular given XY there exists a unique pair (s, yo) € 5 x n™ such
that expyo.(f — p¥ + X9) = f — p¥ + s. Hence,
f—pV+X°) f-r'+s
x x '

expyo.(0x + =0, +

From this, it follows that the Gauge Yy = 2~ 24 P expyo = expy_; z—é maps 0, +
f+27'X%t0 0, + f+ Y, 27 % 1s%, where s% is the projection of s onto s%.
(3,4) Recall that a transversal space is in bijection with the regular G orbits.
Hence (3) @ is surjective if and only if every regular G orbit intersects the affine
space f+1b, and (4) ®o(h) = ®o(h') if and only if f—p¥ +h and f—p" + 1 belong
to the same G orbit. It is proved in [35] that every regular G intersects f + b and
two elements f 41, f +1’, [,I' € b belong to the same G orbit if and only if [ and I’

belong to the same W orbit. O

We now turn our attention to the maps ®;, ¢ > 1. For each ¢ > 1, the map ®; is
an affine function with respect to the variable X*.

Lemma 6.13. Fori > 1, the map @, : ®j§i U; — V; has the following structure
(X0, XY = AXX) + P(XO,.., X (6.12)
where A; : b @ g* — V; such that (X%, X*) — AZXO[Xi] is linear in X°.

Proof. Let £ € U be a 1-Bessel operator, of the form £ = 8, + f + 2~ ' X with
X eby. Let X =3 .., X", with X* € g* and for i > 0 denote

1~
- - J
Li az+f+$§ X7, (6.13)

=0

"The reader should confront the map ¢ with the map res considered in [9, 3.8.11-3.8.13], and
the commutative diagram [22, (3.3)]
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By Lemma 6.6, in order to reconstruct ®; is is enough to find a Gauge transfor-
mation Y; such that II, (Yiﬁi) — the projection of Y;£; onto the space [f,ny] —is a
linear combination of terms of total degree > i. Indeed, this condition is satisfied
if and only if the operator Y;£; is canonical up to total degree i — 1, in which case
the projection of Y;L,; onto V; coincides — by Lemma 6.6 — with the map ®;.

For i = 0, then £y = 0, + f + 7' X with X° € b, and the Gauge Yy was
obtained in Lemma 6.12. We now construct Y; recursively with respect to the total
gradation as Y; = expy;Y;_1, where

" .
N~

it
i=i

yi(x) = (6.14)
is an element of the loop algebra of total degree i. Notice that if we let £ vary
Vv
as a function of the variables X°,... X" ~! then the transformation Y; is a func-
tion of X9 ...X* only. Since ®;(X°, ..., X771) € V;, each map ®; admits the

decomposition
ot
0 j—1y _ J
(X0, X7 )*ZW’ (6.15)
>
for some <I>§ € s'. Now assume that for j < i — 1 the Gauge Y; and the maps
(X0, ..., X7) have been obtained, so that by construction the projection I¢(Y;—1L;—1)
contains elements of total degree > i — 1 only. By construction, the operator

Y;_1L;_1 has the form

ot
YieiLio1 =0 + f + Z Zﬂ+—f—j+ Z bj(z) ,

j<i—1 6> j>i—1

1 .

where bj(z) = > ,5, %, with b] € ¢/, is a remainder term of of total degree j >
i—1. We now look for an element y; of the form (6.14) such that IT¢ ( exp ini_lﬁi)
contains only elements of total degree > i, thus proving the induction step. Due to
(6.13) we have

expy;.Yio1Li = expyi.Yioi(Liog + 271 XY),
and since y; is of total degree i, it follows that the terms of total degree < i — 2
are already in canonical form. This is equivalent to say that Hf(exp ini,lﬁi)
contains elements of total degree > 7 — 1 only. It remains to consider the terms in
expy;Y;—1L; of total degree equal to i — 1. These are given by

1oy o5
bima () + Yo X' i (). 0 + S + Y ],
£>0

and the required condition is obtained imposing that the above quantity belongs
to V;. Due to the definition of the map ®, this is equivalent to say that

o |
+11°

(I)’i(Xov . 'aXZil) = b’b'*l('r) + EYO'XZ + [y’b('r)vam + f + Z x

£>0
The above is a system of equations for the coefficients CIDg € ¢/, related to ®; by
(6.15) and y! € g7, related to y;(x) by (6.14). Applying the Gauge x4 " on both
sides, we obtain the following set of equations in g:
Y@Ly T =D b ey X H Y G-yl — Dyl D ¥,
Jj2i Jj=0 Jj2i Jj2i £20
where yg € ny is the element obtained in Lemma 6.12. Decomposing according to

the principal gradation and projecting onto the subspaces [f,ny] and s, we obtain
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the following system for the elements yf and @{ , with j > :

® =T ((j — i)y’ + by + (expyo. X)) + > [y, @h]), (6.16a)
m+4l=j
[t =T (G — i)y’ + by + (expyo.X)’ + Y [y, ®h]),  (6.16b)
m+l=j

where (expyo.X?)’ denotes the projection of expyo.X* onto g/. The system has a
unique solution since (Kerady) Nnt = 0.

We can now study how the map ®; depends on the variables X, ..., X; when
we let £ vary, in order to prove the decomposition (6.12). By construction, the
quantity b/_,, depends on X°, ... X! only. In addition, since expyo and ®g
depend on XY only, then the quantity <i>f = @g — Hs(bgfl) depend exclusively on
X9 and X*. Moreover, it depends linearly on the variable X*. Indeed, both é; and
yf“ are linear in X*, and at each subsequent steps éf and yzj depend linearly on
the previous ®’s and y’s. This proves the thesis. O

We now consider the behaviour of the map ®(X°,..., th’l) for fixed values of
the first entry X € p.

Definition 6.14. Fixed X° € b, we denote ®X° : nt+ — @D,>1 Vi, the map

(X' XM e Y ey (X0 X LX),

i>1
so that the decomposition
O(XO, .., XM = 3o (X0) + X (XL, X
holds true.

Proposition 6.15. (1) The map X" s injective if and only if it is surjective.
(2) If the map ®X°0 : ny — >0 Vi fails to be surjective then there exists an
i > 2 and a non-zero element y € g' such that [Xo,y] = y.
(3) There exists an open and dense subset A € § such that the map X" s
surjective and injective for all X° € A

Proof. 1) Due to the triangular decomposition (6.10) and to Lemma 6.13, the map
X’ is surjective if and only if <I>Z-X° is surjective for all ¢ > 1, which is equivalent
to the condition det A;.X © £ 0 for all ¢ > 1, which is equivalent to the condition ®;
is injective for all ¢ > 1, which is equivalent to the condition that ®* *is injective.

2)Let Uyo be the affine space 9, + f + 2~ 1(X? + V) with ¥ € nT. If X" is
not surjective, then by part (1) it is not injective. Hence, there exist operators
L,L € Uxo and (due to Lemma 6.6) Gauge transformations M, M € N, such
that ML = ML. Thus, Y = M~'M € N, satisfies YL = L. Since Y € Ny,
we take it to be of the form Y = exp Zfzvfl ;:1 z—j with ! € g'. Now let I > 1
the minimal index ¢ such that y; # 0 for at least one 1 < j < 4. Then, a direct

calculation shows that the only term of principal degree I — 1 in £ — £ is given by

I
I_ Yji -1
q _Z[fa :Cj]EQ ’ (617)
J
Since £,L£ € Uxo, then they terms of total degree < 0 coincide, from which it
follows that necessarily ¢! is of total degree greater than 0. By looking at (6.17)
we thus obtain that ¢/ = O(%), from which we deduce that I > 2 and y]I = 0 for
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all j > 2. Collecting the terms of principal degree I in £ — £ according to formula
(2.5), we get
[y{a XO] + ﬂ
x? x?
Since YL = L belongs to Ux,, the above term must vanish. Then, the non-zero
element y{ € g, I > 2, satisfies [Xo, 5] = v{.
3) Due to (2), the set of X such that X" is not bijective has positive codimen-
sion.

O

The following result, which is of crucial importance in our construction, is a
straightforward corollary of the previous Proposition.

Corollary 6.16. The map o0 ny — 2121 Vi is surjective.

Proof. The spectrum of ad_gy restricted to nT does not contain positive integers:
indeed it is {0, —1, -2} if g # A;, and {0, —2} otherwise. O

Example 6.17. The case g = A;. In this case nt = g!. Since g/ with j > 2 is
empty, then - by Proposition 6.15(2)- the map dX" is bijective for every X° € b.

Example 6.18. The case g = Ay. We have that nt = g' @ g2, with g2 = Ces.
Given X9 € b, we show that the map ®X° i nt = Vi, @ Vs fails to be surjective
if and only if [X eg] = eg. We deduce that, for this particular Lie algebra, the
necessary condition described in Proposition 6.15 (2), for ®X ’ not being injective,
is also sufficient. Consider the Gauge Y = exp<t. If L = 0, + f + XO;X, with
X € ny is a 1-Bessel operator, then £ = Y.L = L + [f’;"] + eeH;Z’XO]. So, Lis a
1-Bessel operator (namely, it belongs to the domain of ®) if and only if X© satisfies
(X0, eg] = eg. If this is the case, then £ # £ but ®X’(£) = X’ (). Hence ®X" is

not injective, nor surjective.

6.3. Extended Miura map for Quantum-KdV opers. Building on the theory
of Bessel operators described above, we address here the main topic of the present
section. The problem is to find a Gauge transformation mapping the oper

Lo=0, +f+z d+1+zz *dz d+1l, (6.18)

jeJ i=1

with 7% s%(j) € s, to an operator of the form

r 1 'S xig)
£, =0, z - 2 6.19
! + [+ +j; — ; = (6.19)

J

with 7 € h and X'(j) € g°. As a first step, we prove that the canonical form of the
operator (6.19) is of type (6.18).

Lemma 6.19. For an arbitrary choice of its parameters, the canonical form of the
operator L is an operator of the form (6.18). Moreover, one has that Y 5 7% =

Do(r) and 37 5 (j) = o(XO(j)), for j € J.

Proof. The operator £ satisfies the following property: it is regular outside 0, co
and wj,j € J, and these points are at most fuchsian singularities. From Corollary
3.11, the canonical form of £; satisfies the same property. To prove the first part of
the Lemma, it is then sufficient to show that any operator in canonical form with
such a property is an operator of the form (6.18).
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Solet L = 0, + f + s, for some s € s(Kp1). From the definition of Fuchsian
singularity it follows that if 0, oo are Fuchsian then s must satisfy s% = O(z~% 1)
as z — 0, and s% = O(z7%~1) as 2 — 0o. Now let

i _ 1; di+1.d; 3 _ _
T —il_r%z 5% (2), 3(z) = s(2) ;Zdﬂrl'
i=
One has that 5(z) = O(z=%) as z — 0, and 3(z) = O(z~%*!) as z — co. Due to
Lemma 4.6, the function § admits the decomposition
mi(j) d;

=33 =" 3 o m ?)ﬁzﬂﬂ_z ’

jeJ i=1 =

for some m;(j). Since w; is Fuchsian for every j € J, then m,(j) = d;. Hence, L4
is of the form (6.18).

By Lemma 6.4(ii), the the principal coefficients of £ and L, at any singular-
ity must be conjugated; this is equivalent — see Lemma 6.12 — to the conditions
Sy = Bo(r) and 37, 547 (5) = Bo(X°(j)). O

Since the case J is empty was already addressed in Proposition 4.1, we sup-
pose that J = {1,...,N} for some N € Z;. The space of £1,L; operators
can be identified with the linear space of free coefficients in their defining for-
mulas (6.18), (6.19). Because of the above Lemma, we have a (nonlinear) map
between the two spaces, which satisfies the constraints > 74 = ®(r) and
30 sg'(6) = Ro(X0().d = 1,....N.

Definition 6.20. Let
N
Un = €D
j=1

where V;(j) = span{s(j) € s%,i < d; < h¥—1}. For every (r, X°(1),..., X°(N)) €
hON+1 we denote

hY -1 hY—1

— N
D xoedt, W=D Do),

j=1 i=1

F= Fr,X“(l),...,XO(N) Uy — Vi, (6.20)

the map which associates to an operator (6.18) its canonical form.

Recall from the local theory that, fixed the part of total degree —1 by the choice
of an element X° € b, there is a map ®X° from the space of 1-Bessel operators to the
space of the corresponding s-Bessel operators. In the following theorem we prove
that the map (6.20) is bijective if and only if, for every j =1,..., N, X°(j) is such
that the map ®X () i bijective. Due to Proposition 6.15, the latter conditions are
verified in an open and dense subset of the parameters X°(j) € h®V. In particular
they are verified, by Corollary 6.16, when X°(j) = —0" for all j = 1,..., N, which
is the case relevant for the Quantum g—KdV opers.

Theorem 6.21. The map FrX0), XO(N) g bijective if and only if for every
j=1,...,N the map X’ s bijective.

Proof. Fix m € {1,..., N}, and consider the localisation at w,, of the operators
Ly of type (6.18) and L4 of type (6.19). We have
l

u
(L)u, =0n+f+ > —25,  uwped (6.21)
1,k>0
i J
Conmttst X S es e
1,k>0
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The coefficients u! appearing in (6.21) can be written in terms of the original
variables of £ as

Xi(m) l

wy="——,  u > ai;X'G), 1=0,...i-1. (6.23)
m je\{m}
for some complex coefficients a;; ;. We define ‘Z(m), i=1,...,hY — 2, as the

subspace of coefficients tzl appearing in (6.22) which have total degree i — 1 and
principal degree at least . Namely, we have

Vi(m) = {t& d; > i}.

For each pair of indices m, ¢, the Gauge transformation EL — L =Y.Lq from L
to its canonical form L induces a map E(m) : Uy — Vi(m), obtained by first
localizing the image operator Y.£; at z = wy, and then restricting to the terms in
Vi(m). As we prove below, the map F;(m) admits the decomposition

X (m —

L) 4+ Pim , (6.24)

)

J— 0
where for each X° € h the map A * . g' — V;, is linear and coincides with the map
A; defined in Lemma 6.13, while P, ,, is a function of the variables X!(m), with
I<i—1l,and me{l,...,N}.

In order to prove the decomposition (6.24), we adapt the proof of Lemma 6.13 to
the present case. Let (Y),,,, be the localization at z = w,, of the Gauge transform
Y mapping £ to Ls. We obtain (Y),,, € /\/l%f as the direct limit h_n)lYi, where Y;
maps a truncation of (L£1),,, to its canonical form, up to terms of high (enough)
total and principal degrees in such a way that the functions F;(m), with i =
1,...,hY — 1, are completely determined by the action of Yy, ...,Y,v_s only. This
is done as follows. Let £; be the projection of (L), onto the subspace of total
degree < i — 1 and principal degree < i. Then from (6.21) we get

1 1+ 1

EFZZ;?Z :

=0 k=0

Then we look for Y; such that II;(Y;£;) is a linear combination of terms of total
degree > i — 1, and moreover the terms of total degree equal to ¢ have principal
degree < i.

For ¢ = 0 we choose the Gauge transformation Yy = x’va, with Y € N, which

d

l
maps O, + f+a7ud to O+ f+ Y, % We then reconstruct Y; recursively as
i+k . .
follows. (1) We look for y; = >, %, with 3"t* € g'** such that the projection

Oy (exp y;Yio1.L;)

only contains terms of total degree greater than i. Notice that y; is non-trivial only
if i <hY —2. (2) We obtain Y; as expy}expy;Yi—1 where y} = Z;:O z,ﬂ—i,l, for
some p* € gF.

We implement (1) following the proof of Lemma 6.13, and we obtain a linear
system for y*** and thus for F;(m). This coincides with system (6.16) after we
Xig,@, ®; — F;(m). In this system, the known
terms b’s are shown, recursively, to depend on the coefficients uﬁc,l <i—1,k<lof
the local expansion of £1; after (6.23)), these terms depend on X'(5), for I <i—1,
and j = 1,..., N. Hence the same reasoning as in 6.13 after equation (6.16) proves
the decomposition (6.24).

rename the variables X* — y§ =

38



We now prove that the decomposition (6.24) implies the thesis. First we compute

the coefficients ¢; di spanning V( ) in terms of the original coeffcients of the oper
Ls. We have

_slm) dl ) 4 > biasi(m (6.25)
0<k<i—1

for some complex b;; ;. By above formulas, we have an invertible map

N N
D Dvitm) — D Dviim)
m=1i>1 m=1 i>1
which associates to an oper of type (6.18) the totaliy of local coefficients belonging
to the spaces V;(m)’s. It follows that F' : Uy — Vi is bijective if and only if the

map
N hY-1 N hY-1
=2 2 Film):Un = €D €D vilm
m=1 i=1 m=1 i=1
is bijective. Due to the decomposition (6.24), one deduces recursively that F is

bijective if and only if the maps F;(m) are bijective for every i (and m), if and

°m) . g' — Vi(m) are bijective for every m and i.

only if the linear maps A
0 . ~

After Lemma 6.13(ii), the linear maps Af( (m) g* — Vi(m) are bijective for every

m=1,...,Nandevery i =1...hY —1if and only if the maps dX°(M) are bijective

forallm=1...N. O

The main result of this section is a direct corollary of the previous theorem: any
A\
Quantum KdV oper can be uniquely written in the following form £; 4+ 2= +1 (1+

Az=R)ey where £; is as in (6.19) with X°(j) = —6" for any j € J.

Corollary 6.22. Fiz (T,l%) € h x (0,1). Any operator L(z,\) satisfying Assump-
tions 1, 2, 3 defining the Quantum g-KdV opers, with a (possibly empty) set
{wj,j € J} of additional poles, is Gauge equivalent to a unique operator of the
form

hY =1 /.
1 X
E(z,)\):({?erwangE p, : —0Y + E % +27M 1+ A2 )69,
jeJ J i=1

(6.26)
for some X(j) € ¢°

Proof. The case when J is empty was proved in Lemma 4.1. Here we suppose
J ={l...N} with N € Z;. After Proposition 4.7, the Quantum g-KdV opers
satisfying the first Assumptions 1, 2, 3 are of the form L, + 27 (1 4 Az F)ey,
where L is the oper (6.18) such that 7 = ®¢(r) and Zi 0'(J) = Do(—0Y), for
j=1,...,N.

Due to Corollary 6.16, the map o7 is bijective. It then follows from Theorem
6.21,that the operator L is gauge equivalent to an operator of the form 6.19 with
X(j) = —0Y for j = 1,...,N. Since the term z=""*1(1 + X\z=F)ey is Gauge
invariant under N (Kp1), the thesm follows. O

We remark that the operator (6.26) is Gauge equivalent to an operator where
all regular singularities are simple poles. Indeed we have

f—=p+r —60Y + (J)

P 14+
'Ly =0, + +> T T Fes,
JjeJ
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where X (5) :Zhvo_lXi(j) engforj=1,...,N.

1=

7. THE GRADATION INDUCED BY THE HIGHEST ROOT

In order to proceed with our program, we have to impose on the operators (6.26)
the trivial monodromy conditions at any additional singularity w;,j € J. These
operators have locally, at any w;, j € J, the expansion

_ Vv
51+M

+0(1), nent,

where 6 is the dual to the highest root of the Lie algebra, ¥ = v=1(0). As we
will see in the next section, for an operator with a simple pole, the monodromy is
computed by decomposing its coefficients in the eigenspaces of the adjoint action
of the residue —0Y + n. As a necessary preliminary tool, we therefore devote this
section to the study of the eigen-decomposition of g with respect to the adjoint
action of —0Y 4+ n with n € n™.

The gradation induced by 6. We need the following lemma, which can be found
in 30, Section 9.

Lemma 7.1. Let a, 8 be nonproportional roots. Then

(i) If (a|8) > 0 then a — B is a root. If (a|B) < 0 then ac+ 3 is a root.
(i) If g is simply-laced then («|B) € {—1,0,1}.

Let 6 € A be the highest root of g, and denote 8V = v=1(0) € h. We want to
study the spectrum of ad 6V in the adjoint representation. It is clear that for every
a € A, if x € g belongs to the root space of a then we have

[0V, 2] = (0a)x.

Now we can apply Lemma 7.1 (ii) to the case when one of the two roots is 6, the
highest root. The only roots proportional to § are +6, and we have (0| + 0) = +2.
Due to the lemma, then (0|3) € {—1,0, 1} for every 8 € A\ {—0,0}. The spectrum
of ad # in the adjoint representation is then given by

-2,-1,0,1,2 if [
ooV = | 2L 0L e Ak )
{-2,0,2} if g = sly,
and we obtain a Z—gradation of g as
2
o= o, a={reg|l’,2]=ix}, (7:2)
i=—2

which we call the highest root gradation. We denote
it 89— 9 (73)

the natural projection from g onto the j—th component of the gradation, and we
set

x; =mj(x), x € g. (7.4)
We describe in more detail the structure of the gradation (7.2). Note that h C go,
and that ny uniquely decomposes as

ny = (goNny) & g1 S go. (7.5)
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Let Ipv = {j€I](0V,c;) =0} C I, and denote by g[Iov] the semisimple Lie
algebra generated by {e;, fi,i € Ipv}. Then, we have

g =gllp]® @ Ca). (7.6)

ie\Iyv

Remark 7.2. The set Iyv is depicted in Table 1 as the subset of white vertices in the
Dynkin diagram. The subalgebra g[Ipv] is isomorphic to the semi-simple Lie algebra
whose Dynkin diagram is obtained by the Dynkin diagram of g, by removing the
black vertices and all the edges to which they are connected. These subalgebras are
explicitly computed in Table 2. Moreover, setting p = go ® u, with u = @, i,
then p is a parabolic subalgebra of g, with gy a reductive (Levi) subalgebra and u
the nilradical of p.

[
‘4
A, @ —0O— — OO0 — @ Eg O—O—0—0—0
1 2 n—1 N 1 2 3 5 6
O O
n—1 ‘5
D, O—e— —0—o0 E, O—O0—0—0—0—e®
1 2 n—2 N 1 2 3 4 6 7

Fr € —O0—0—0—0—0—0
1 2 3 4 5 7 8

Table 1: Dynkin diagrams for simple Lie algebras of ADE type. White vertices
correspond to roots perpendicular to V.

g | a[lo] | dimg[ly] | T\
A, n+1 A, _a n®—n {1,n}
Dy 6 AL DAL DA 9 {2}
Dy,n>5]2n-2] Ai® D, |[202-9n+13| {2}
o 12 A5 35 {4y
E; 18 Ds 66 {7}
Es 30 E; 133 {1}

Table 2: The (dual) Coxeter number hY, the semi-simple subalgebra g[ly], its
dimension, and the set I \ Iy for any simply-laced Lie algebra g.

The dimension of the graded components of (7.2) is computed in the following

Proposition 7.3. Let g be simply laced, and consider the gradation (7.2). Then
a) dimg; =dimg_;, i =0,1,2. b) We have:
dimgo = n(h" + 1) —4h" +6,
dim g1 = 2(hY — 2),
dimgs = 1.
—L coincides with the root space of the highest root 0.
41
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Proof. Part a) is obvious. For part b) we proceed as follows. The dimension of
g2 is computed by first noticing that the roots proportional to 6 are +6, with
(0,460) = 42, and then using Lemma 7.1 (ii) which implies that go = g" 1,
the root space of the highest root 6. In particular, dimgs = 1. (Incidentally,
the same argument shows that g_o = gl_hv, the root space of the lowest root
—0, so that dimg_» = 1). To compute dim gy note that due to (7.6) we have
dim go = dim g[Igv]+#(I\I). By looking in Table 2 at the values of hY, dim g[lpv |
and #(I \ Iy), one proves (case by case) that dimgy = n(h" + 1) — 4h" + 6.
Finally, using part a) we get dimg = dimgp + 2dimg; + 2dimgs. Substituting
the values of dim gy and dim g just obtained, and recalling that dimension of the
simple Lie algebra g is given by n(h + 1), where n is the rank and h the Coxeter
number (with i = hY since g is simply laced), then the last identity becomes
n(hY +1) = n(h¥ +1) —4hY 4+ 6+ 2dim g1 + 2, which gives dimg; = 2(hY —2). O

7.1. The gradation induced by R = —0V + 1. Later we will be interested in
gradations of g induced by elements of the form R = —0Y + n, with n € n_. We
begin by recalling the definition of Jordan-Chevalley decomposition.

Definition 7.4. Let R € g. There exists a unique decomposition, named Jordan-
Chevalley decomposition, of the following form R = Rs; + R,,, with Rs semisimple,
Ry, nilpotent, and [Rs, R,] = 0. We denote o(R) = o(R;) the spectrum of R in the
adjoint representation.

The following lemma will be very useful.

Lemma 7.5. Let R = —0Y +n, with n € ny, and write n = 1o + n + N2 with
n; € g;- Then
(1) o(R) = o(0");
(2) R is semisimple if and only if no = 0;
(3) If R is semisimple then
R = —edlmt3m)gy. (7.7)
Proof. Let 7y € g satisfy (adno—1)71 = 1, and 72 € g be such that (adny—2)72 =
n2 + 37, m]. Then 7; € gi C ny, i =1,2, and [, 72] = 0. Moreover, we have
edmtn) p — _gv 4 70-
Since 0" is semisimple, 7 is nilpotent and [0V, 70] = 0, then we obtain that
Ry = —e~ ad(ﬁ1+ﬁ2)9V, R, =¢€" ad(ﬁ1+ﬁ2)n0 (7.8)
are, respectively, the semisimple and nilpotent parts of the Jordan-Chevalley de-
composition of R. From this, we obtain: (1) o(R) = o(6V), (2) R is semisimple if
and only if 79 = 0, (3) if R is semisimple so that ny = 0, we have 7j; = —n; and

2 = —'&, so that R, given by (7.8) coincides with R given by (7.7). O
Let us now consider the gradation
9= P 0(R), @R ={zrecg|[Ra]=ir}, (7.9)
i€o(R)

in case R is semi-simple. Note that due to (7.7), the gradation (7.9) is conjugated
to the highest root gradation (7.2), namely

gi(R) = {ead("ﬁ%m):c |z € g,i} . (7.10)

For j € o(R) we denote by ﬂ'JR the natural projection from g onto g;(R). Note that
from (7.10) we have that
k= ead("ﬁém)w,je_ ad(m+3n2)
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We write this formula in a very explicit form that we will need in the following
section, when dealing with trivial monodromy conditions. Let x € g and denote by
x; = m;(x) the projection (7.3) of x onto g;, then we have

ai(z) = erdlnt3m2)y (7.11)
li(z) = ead(er%m)(x_l —ady, r_2)

1 1
ﬂ.é?,(l,) _ ead(m+%nz)(x0 —ady, 21+ = adi1 T_9 — 3 adp, _2)

2
R _ ad(’rh-‘r%’r]g) d 1 d2 1 d 1 d3
T (x)=e (ml—an1x0+§anlx_1—§an2x_1—6amx_g
1
+ 3 ady, ady, v_2)
R 1 1 1 1
w2y (x) = xo — ady, ©1 — 3 ad,, o + 3 ad;, w0 — 6 ad, x_1 + 3 ady, ady, 1

1
8

The above identities have been obtained by means of the following expansion:

1 1
+ 2 audf71 T_o+ adf72 T_9 — 3 adfh ady, r_2.

1 1 1 1
erdlmtam) =1 4 adn; + 3 adng + 5 ad?n + 5 adn; adng + 3 ad? ny
1 1 1
+ 6 ad3 m + Z ad2 m ad 2 + ﬂ ad4 mn.- (712)

Remark 7.6. Note that g1 (R)®g2(R) C ny, while go(R) = h%® (go(R)Nny), where
h% is the Cartan subalgebra conjugated to h under the automorphism exp(ad(n; +

3712))-
7.2. A symplectic subspace. Consider the vector subspace
t=C0"®g1®gCayg, (7.13)

which due to Proposition 7.3 is even dimensional, of dimension dimt = 2(hY — 1).
Note that we can write t as t = CAY @ [0V, ny]. Define on t the skew-symmetric
bilinear form

w(z,y) = (E-gllz,y]),  zyet (7.14)

where (|) is the normalized invariant bilinear form (1.6) on g, and E_y is the
lowest weight vector of g introduced in Section 1. The form (7.14) is also non-
degenerate, therefore it defines a symplectic structure on t. We outline here two
different approaches to prove this fact. The first approach is based on the fact
[37] that t = (Kerad E_g)*, the orthogonal complement (with respect to (-|-) ) of
the vector subspace Kerad E_y. Therefore, t is a symplectic leaf of the ‘frozen’
Lie-Poisson structure [39], and (7.14) is nothing but the induced symplectic form
on t.

For the second approach we present a canonical basis for (7.14), according to
the following construction. Recall the root vectors E,, a € A, of g introduced in
Section 1, satisfying the commutation relations (1.13). From (7.2) we have that
E, € g; if and only if (a]f) = 4, so that g1 = (E,, (0la) = 1) and g2 = (Ep). In
order to deal with elements in t, we define the set © C h* as

© = {0,0}U{a € Al(alf) = 1}. (7.15)

Denoting Ey = 6V /2 then {E, | a € O} is a basis for t. Recall the bimultiplicative
function €4, introduced in Section 1.

Lemma 7.7. Ifa € O, then§ —a € © and § — a # a. Moreover, €40 = —€g—_q,0-
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Proof. If o is equal to 6 or 0 the only nontrivial assertion is the last, where due to
Lemma 1.1 we have g9 9 = 1 and €99 = —1. Now let o € © with («|f) = 1. Then,
due to Lemma 7.1(i) we have § — « € A, and (0 — «|f) = 1, so that § — a € O.
Moreover, 0 —a = « implies § = 2« for o € A, which is impossible. Thus, 0§ —a # «.
Finally, due to Lemma 1.1, we have €9_n.0 = €0,66—0,06 = —€a,6- [l

The function ¢ takes values +1. We introduce the subset
©={aecBOleg.=1}CO, (7.16)
and due to Lemma 7.7 we have © = {a,0 — | a € O}.

Proposition 7.8. For z,y € t, withx =} o 1*Ey and y = Y o y*Eq then
(7.14) takes the form

wlz,y) ==Y (@Y’ —a’=y),

acd
where © is given by (7.16). Thus, {Eq | € O} is a canonical basis for t.

Proof. Let ¢ be the coefficient of Fy in the commutator [X,Y]. Due to (7.14) and
(1.15) we have w(X,Y) = —c. An explicit computation gives

c = Z eeﬁazayﬁfa _ Z(xayefa - Zﬁfaya),

a€O acd®

where in the last step we used Lemma 7.7. O

The symplectic space t will play an important role in Section 9, when computing
the trivial monodromy conditions for quantum-KdV opers.

Remark 7.9. In order to obtain a canonical basis for the form (7.14) we chose in the
construction above Ey = 6V /2. In the computations we will perform in Sections 9
and 10 it will be slightly more convenient to choose Fy = 0¥. We will point out
our choice whenever required.

8. TRIVIAL MONODROMY AT A REGULAR SINGULAR POINT

In this Section — following [2] — we consider an arbitrary linear operator with a
first order pole, and we derive necessary and sufficient conditions (on its Laurent
series) to have trivial monodromy. We then specialize to the case of the localisation
of a Quantum g—KdV oper (6.26) at an additional singularity.

Let © = 0 be the singular point, and assume that the operator has the expansion

£:3I+E+Zakzk, (8.1)
x k>0

with R,a" € g.

Definition 8.1. We say that the operator (8.1) has trivial monodromy at = 0
if, for any finite dimensional g-module V, the differential equation £y = 0, with
1 : C — V, has trivial monodromy

It is well known that the eigenvalues of the monodromy matrix are of the form
exp 2im A, where A an eigenvalue of R. Since we look for conditions on £ such that
the monodromy matrix is the identity in every representation, we must restrict to
the case where R has integer eigenvalues in any finite-dimensional representation
of g. For this reason, we assume that the semi-simple part Rs of R in the Jordan-
Chevalley decomposition is conjugated to an element of the co-root lattice QV of
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g. In fact, see Proposition 8.3(5), the operator (8.1) has trivial monodromy if and
only if it has trivial monodromy in the adjoint representation and R, is conjugated
to an element of the co-root lattice.

Because of our assumption on Ry, we have the Z-gradation

9= P wi(R), 8:(R)={recgl|[Rs,z] =iz} (8:2)
i€o(R)
In order to compute the monodromy of £ at x = 0 we transform it into its aligned
form. The following definition is adapted from [2].

Definition 8.2 ([2]). The operator (8.1) is said to be aligned (at z = 0) if a’ €
g—i—l(R) for ¢ Z 0.

Proposition 8.3 ([2]). Let L be a connection with local expansion (8.1), such that
R is conjugated to an element of the co-root lattice QY , and let m = maxo(R). Let
moreover G|[[x]]1 be the sub-group of Gauge transformations of the form G[[z]]1 =

14> M;z' | M; € g} and positive radius of convergence.

(1) L is equivalent to an aligned connection by a transformation in G[[x]]1.

(2) The monodromy of L coincides with the monodromy of the aligned connec-
tion equivalent to it.

(3) Ifa* € g_i—1(R) fori=0,...,m—1, then L is conjugated in G[[x]]1 to the
aligned connection 0, + x_lR +30 Laigt,

(4) The monodromy of the connection L depends only on the first m + 1 coef-
ficients of the expansion of L at x = 0, namely R,a°,...,a™ L.

(5) Let L be aligned. The monodromy is trivial if and only if R, = 0, and

k=0 fork=0,...,m—1.

Proof. The proof can be found in [2, Section 3|. Here we just comment on part (5).
Let £ be aligned, namely of the form

m—1
R
L =20 o k., .k k L )
ot —+ Y atat, dbega(R), (8-3)
k=0
with m < maxo(R). Since R, belongs to the co-root lattice, the Gauge transfor-
mation 224 #s is single valued in any finite dimensional g—module. We have

xadRsﬁzam_i_R +Zk0a ’ (8.4)

and the monodromy of the above operator c01nc1des with the monodromy of L.
We now prove that the element R, + Y .-, a” is nilpotent. Indeed, by definition
R, € go(R), so that adg, : g;(R) — g,(R), while by hypotesis ar, € g—_x—1(R), so
that ady, : g;(R) = gj—x—1(R), with £ > 0. Suppose that A # 0 is a non trivial
eigenvalue of R, + Z;n:o a’ with eigenvector 0 # y = >, yx and y, € gi(R). If
K is the minimum integer such that y # 0, then yx is an eigenvector of R,, with
non-trivial eigenvalue A, which is a contradiction, because R,, is nilpotent.

Now let V be a non-trivial finite dimensional g— module let {¢;,i=1,...,dimV}

be a basis of V. Then the functions ¥; = x ~(Ratxista )7,/11, withi=1...dimV,

satisfy (224 £)¥; = 0 and form a basis of solutions. The monodromy matrix is

therefore given by
m—1

M =exp ( — 2im(R, + Z a’))
j=0
Since R, + Zm:ol a’ is nilpotent then the monodromy is trivial if and only if
R, + Z —0 ' a9 = 0, from which the thesis follows.
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Now let us consider what happens in the particular case of a quantum g—KdV
oper (6.26). Localising at w,, we obtain a connection of the form (8.1) with R =
—0Y +n, where n = 3,5, w; ' X*(j) € n*. Due to (7.5) we can write

R=—60"+no+m+mn,

with 9 € goNny, 1 € g1 and 72 € go. We can then apply Lemma 7.5 from which
we obtain that o(R) = ¢(6Y). In particular, maxo(R) = 2, so that according to
Proposition 8.3(4), the monodromy of the quantum KdV opers at z = w; depends
only on the first three terms of the Laurent expansion. In the next theorem we
derive necessary and sufficient conditions for the trivial monodromy of an operator
of the form

R
E:aﬁ; +a+ bz + O(2?), (8.5)
with R = —60Y +n9 +n, +n2 and a,b € g.

Theorem 8.4. The operator (8.5) has trivial monodromy at x = 0 if and only if

no =0, (8.6a)
7 (a) =0, (8.6b)
i (b) = [rf5(a), 75 ()], (8.6¢)

where w8 denotes the projection of g onto g;(R) = {z € g,[—0Y +m1 + 12, 2] = ix}.

Proof. Let L be an operator of the form (8.5). Due to Proposition 8.3 the mon-
odoromy of L coincides with the monodromy of its aligned form, and the residue
R of L coincides with the residue of the aligned operator. Moreover, again by
Proposition 8.3, if an aligned oper has trivial monodromy then R, = 0. It follows
that if the monodromy of L is trivial then R,, = 0. By Lemma 7.5, the element
R = —0Y +ng + 11 + 12 is semisimple if and only if ny = 0. This proves condition
(8.6a).

By Proposition 8.3, the operator (8.1) with R = —0Y + 1y + 12 is equivalent to
an operator of the form

-0V + 1+ N2
X

L1 =0,+ +C%+ Clz+ 0(2?), C'cg_i1(R),i=0,1, (8.7)

by a transformation in G[[z]];, and the monodromy is trivial if and only if C° =
C! = 0. The thesis is proved once we show that C° = 7, (a) and C! = 7%, (b) —
[78,(a), 7{t(a)]. In order to obtain C°, C! we look for a Gauge transformation of the
form e’ T ¢*T € G[[z]]1, such that e*TL = 0, + £ 4 C"+0(2), and @’ T'erT [ =
Or + &4+ C°+ C'z + O(x?). We have

eIT£:6z+§+D°+D1x+..., (8.8)

where
D°=a—T+|[T,R] (8.9)
D'=b+[T,a] + %[T, [T, R]). (8.10)

Now we look for a T' such that D° is aligned, namely D° = = (DY). Writing
T =Y, 7m8(T), with 7f{(T) € g;(R), and choosing
R
R R m; (a)
Y =0 R(TY = 9/
7T71( ) ’ 7Tj ( ) j+ 1’
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we get D° = 7%, (a), which is aligned. Hence

C% =D =7"(a). (8.12)

This proves the second condition (8.6b). Inserting now (8.9), (8.12), and (8.6b),
into (8.10) we obtain

1
D' =b+ 5[T, al . (8.13)

Now we look for a 7" € g such that exp z*T" expaT.L = 0, + £+ CO+Clz+O(2?).
By repeating the same steps as above, one shows that

1
Ct=nly(D) = 75 (b) + 57 55(( T a]) - (8.14)
Since 7%,[T, a] = Zj>0[7T§j(T),7T_2+j(a)], and using (8.11) together with (8.6b),
we obtain that B

C’l — 7'('1_22(()) — [71'1_%2(@)77(5(0’)]7

from which the third condition (8.6¢) follows. O

Remark 8.5. The Quantum KdV opers (6.26) depend on two set of unknowns, the
location of the poles w;,j € J and the local coefficients X'(j) € g°,j € J. If
J ={1...N}, these are (1 4+ dimn )N = (1 + %)N variables. However, due to
the previous theorem, the condition mo(X%(j)) = 0, holds for every i = 1,...,hV —1
and j =1,..., N, implying that

XZ(]>691@927 ’Lzlvvh’v*la jil,,N

The space g1 @ g2 is a codimension 1 vector subspace of the symplectic space t
introduced in the previous section. As a consequence, the number of non-trivial
unknowns reduces to N dimt = 2N (hY —1). This fact represents a major advantage
of working with the Gauge where all singularities are first order poles. Working for
instance in a canonical Gauge s, then necessarily the singularities are higher order
poles, and the total number of non-trivial unknowns we need to consider is again
(14 222) N — a number which grows quadratically with n — rather than 2N (hY —1),

2
which grows linearly.

The trivial monodromy conditions (8.6) for the operator (8.5) are written in
terms of the gradation (7.9). This gradation depends on the coefficients 7,72,
which are unknowns of our problem. In order to be able to derive an explicit
system of equations for these unknowns, we write conditions (8.6) with respect to
the fixed gradation (7.2), namely the gradation induced by the highest root. From
here below we restrict to operators with local expansion (8.5) such that a € f+ b,
b € by, for this is the case of the Quantum g—KdV oper (6.26). From now on
g # slo, and the sl case in treated in a separate section of the paper.

Lemma 8.6. Let L € opy(Kp1) be given by (8.5), with a € f+b*, b € b*.
Moreover, for j € Z set a; = mj(a), bj = 7;(b), j € Z, where 7; is the projection
defined in (7.3). If g is not of type sla, then a_o =b_9=>b_1 =0.

Proof. We have b € b C go ® g1 @ g2, which implies that b_; = b_s = 0, while
a€f+bCg_1Pgo® g1 P ge, implying a_o = 0. O

We can now write the trivial monodromy conditions (8.6) in terms of the grada-
tion (7.2).
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Proposition 8.7. Let L € opy(Kp1) be given by (8.5), witha € f+by, b€ by. If
g is not of type sly, then the trivial monodromy conditions (8.6) are equivalent to
the following system of equations forneng,a€ f+by, beby:

no =0 (8.15a)
2a1 — 2[n1, ao] + [n1, [m, a—1]] = [112,a-1] = 0, (8.15b)
2b2 + [n1, [, bol] — 2[m1, b1] — 12, bo]
1
= |2a2 = [m2, a0] + gl [, ao] + 2[n2, a-1] — dan], ao — [m, a-1]| =0, (8.15¢)

where n; = m;(n), a; = m;(a), by = m;(b) € g;.

Proof. Due to Lemma 8.6 we have a_, = 0 and plugging = a in the relations
(7.11) we get

7t (a) =0
mfi(a) = e*mFamg
() = M F) (qp — ady, a_y)

. 1 1
78 (a) = e24nt3m) (g 4 = ad? a_1 — = ady, a_ — ady, ag)

2 2
1 1 1 1
5 adf’71 a_1+ 3 adf71 a — 5 ady, ag + 3 ad,, ad,, a_1 — ady, a1.
On the other hand, after Lemma 8.6 we have b_; = b_5 = 0, so that for z = b the
relations (7.11) become 75 (b) = 7 (b) = 0, and

T (b) = et imp,

71'13”2(a) =qay —

7P (b) = e24mT2m) (b — ad,), bo)
1 1
(b)) = by + 3 ad;, by — 5 ady, by — ady, b

Plugging these formulae into (8.6), one gets (8.15). O

9. TRIVIAL MONODROMY FOR QUANTUM-KDV OPERS

In this section we address the final assumption, namely Assumption 4, on quan-
tum g—KdV opers: for any value of the loop algebra parameter A, the monodromy
at any regular non-zero singular point must be trivial. As a result, we completely
characterise quantum g-KdV opers by means of a system of rational equations, see
Proposition 9.22.

We thus consider an oper of the form (6.26) such that the set J of additional
singularities is non-empty, namely J = {1,..., N}, for some N € Z_. Hence (6.26)
reads

hY—1 i/ -
NS —ngﬂ . (9.1)

i=1

N
v 1
L=0.4f+—+(" + AR Ep +
z AT

where we put, and use from now on for convenience,
k=1—h"—ke(=h",1—h") (9.2)

in place of k € (0,1). In formula (9.1), the quantities r € b and k € (—h¥,1 — hY)
are given, A € C is arbitrary, while the non-zero pairwise distinct complex numbers
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wj, and the Lie algebra elements X?(j) € g' are to be determined by the trivial
monodromy conditions.

For any fixed £ = 1,..., N, the localization of £ at z = w, yields an expansion
of the form (8.5). Indeed, using = z — wy as local coordinate, we get

Oy + @ +a(l) + b()x + O(2?), (9.3)

where the coefficients R(¢) = —6Y + n(¢) with n(¢) € ny, a(f) € f+ by and
b(¢) € b can be obtained from (9.1). Since £ is of type (8.5), the trivial monodromy
conditions at z = wy are provided by Proposition 8.7. Imposing that those trivial
monodromy conditions are fulfilled for any value of A\, and using the expression of
n(£€),a(f),b(¢) in terms of the coefficients of (9.1), we obtain below a complete set
of equations for the unknowns w;, X*(j),j =1,...,N.

9.1. Vector notation. In order to deal with all singularities {w;,j = 1,...,N}
at once, it will be useful to consider the following construction. For every pair
of vectors v = (v1,...,vx) and v/ = (v},...,v}) in CV, denote by v o v’ their
Hadamard product:

vov = (vul,...,unvly) € CY,

and extend the Lie algebra structure form g to the tensor product CY ® g by
letting [v®@ z, v/ ® y] = (vov) ® [z,y], for v,v' € C and z,y € g. Setting
1= (1,...,1) € CV, then we have an injective homomorphism of Lie algebras
g — CV®g given by z — 1 ® x, € g. By abuse of notation we denote in the
same way elements of g and their images in CV® g under this homomorphism. The
elements X*(j) appearing in (9.1) can now be written in the more compact form

Xi=(X"(1),...,X"(N)eCNog, i=0,...,hY —1. (9.4)
Moreover, for the additional poles w;, 7 =1,..., N denote
w = (wi,...,w,) € CY, (9.5)
and for s € R put w® = (w3,...,ws) € CN. Let C(w) = C(w1,...,wn) be the
field of fractions of the polynomial ring C[w| = Clwy, ..., wy]|. For i € Z, introduce
the N x N matrices — with values in C(w) — given by
(Ai)e; = {:ﬁ i; . (B = {f@ﬁ)ﬁ ﬁi; . (96)
and define A, B € Endg(w)(CN @ g) as
Alvez) = A;(v) ®z, reg, (9.7)
B(v®z) = B;(v) ®x, reg (9.8)

In addition, introduce M, S, Y € Endc(w) (CN @ g) as follows. For X € CV @ g let
M(X) = A(X) — Ao(1) o X + [r, X], (9.9a)

S(X) = 2B(X) = Bo(1) 0 X + SRACX) 5 Ag(1) o X + (14 5[ X],  (9.90)

2 2 k
Y(X)= §k:2X + 3RAX) +2B(X) + (14 3)[r, X, (9.9¢)
We can now express the trivial monodromy conditions for the operator (9.1). Recall

that

7"-O(f) = - Z E—Otw W—l(f) = Z E—ozi (910)
i€lq i€I\Ip
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are the projections (7.3) of the principal nilpotent element f with respect to the
highest root gradation (7.2). The trivial monodromy conditions for the general case
are expressed as follows:

Proposition 9.1. Let rankg > 1. The operator (9.1) has trivial monodromy at
z=wy foreveryl =1,...,N and every A € C if and only if the following conditions
are satisfied:
(1) Fori=0,...,hV —1, the variables X* belong to CN @ t', where t = CO" &
91 Dge C b is the symplectic vector space defined in (7.13), and t* = tNg'.
(2) the set of variables {w} U {X*|i = 1,...,hY — 1} satisfies the following
system of equations

(X" 7-1(f)], Bo] = (K1 +6(r)1 — 240(1)) ® Ey, (9.11a)
[Wﬂmumﬂmw+§2wmw“ﬂmJML =1, =2,
= (9.11b)

21— hY —k)w ® Eg 4 Y( h*1+z XM 5(XY)

RY —2 -
S e ) (9.11¢)

Here, X = —1® 0V, Ey € g is the highest root vector defined in §1.2, the operator
Ap € Endg(w)(CN) is given in (9.6) and M,S,Y € Endcw)(CN @ g) are given in
(9.9).

Proof. Recall that the monodromy about z = wy of an operator with expansion
(9.3) is encoded in the the quantities R(¢), a(¢), b(€). These in turn can be expressed
in terms of the variables X*i = 1...hY — 1. Defining R = (R(1),..., R(N),
a=(a(l),...a(N)), b= (b(1),...,b(N)) we have

RY —1
R=-1®60"+mn, n:ZWﬂIOXie(CNQ@g. (9.12)
=1
hY—1
a=1@f+w ' @r+ W ™" AW @B+ > w0 A(XY)
1=0
hY—1
b=-w?2@r4+(1-hr)w " +kxwi o E — Z w20 B(XY).
1=0

Note that the projections (7.3) onto the eigenspaces of adgv can be extended
uniquely to CV @ g by the rule 7;(v® 2) = v ® m(x), with v € CV and z € g.

From (8.15), the trivial monodromy conditions at all points w;, j = 1,..., N can
thus be written in the following compact form
no =0, (9.13a)
2a1 — 2[ny, a] + [n1, [, a—1]] — [m2,2-1] =0, (9.13b)
2bg + [, (M1, bol] — 2[n1, b1] — [n2, bo]
2ap — [n2,a0] + %[m, (M1, a0] + 2[n2,a-1] — 4ai], a0 — [n1,a-1]| . (9.13¢)

Recall that by definition X* € CY ® g’, and that X° = -1 ® 0¥ € CN @ t°. Due
to (9.13a) then from (9.12) we obtain mo(X*) =0 for i = 1,...,hY — 1, and — by
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the definition of t — this implies X € CV ® t/, proving part (1). In particular, we
obtain:

hY —2
n = g w o X", no =wi o xh 1
i=1

To prove part (2), we consider (9.13b) and (9.13¢). First, note that we havea_o = 0,
while

a1 =1®m_1(f),
ag=107m(f)+wlo(l@r—A1®0Y)),

a; = Z w0 A(XY),

a = (W' £ AwF) @ Ep + w0 A(XPT ).
On the other hand, b_, =0, b_; =0, and
by =w 2o (-1®r+ B(1®6")),

hY —2
by =- > w0 B(X"),
=1

by=((1-hY)w™ +kAwF D@ Ey—w " "toB(X" 1.

Plugging the above quantities into (9.13b) we obtain

hY -2 i
—i— % % 1 s i+1l—s

Y wiho <—[X Fomo(Al+ M(XY) + 5 D X X ,7r_1(f)]]> = 0.

i=1 s=0
Since for each 1 =1,..., hY — 2 the element in the sum above which is multiplied
by w— ! belongs to CV ® g’, and since each component of w € CV is different
from zero, we get (9.11b). Now we consider (9.13c), which is linear with respect to
A. The vanishing of the coefficient of order 1 in A reads

I{/’Wil & E@ = [1 & E@,ao — [nl,a_l]], (914)

which is equivalent to (9.11a). Note that from (9.14) it follows that for every
QcCV®gp=C"® ghv_l one has

[Q,a0 — [m,a )] =kw !0 Q. (9.15)

We now consider the vanishing of the coefficient of order zero in A in (9.13c). Since
the term 2as—[n2, a]+ % [n1, [n1, a0]+2[n2, a_1]—4a1] belongs to C¥ ®gs then using
(9.15) we get that (9.13c) can be written as 2by+[11, [171, bo]] —2[11, b1] — 12, bo] =
kw1t o (2a3 — [m2, a0] + £ [m1, [M1, a0] + 2[n2, a_1] — 4a1]). By a direct computation,
the latter identity is shown to be equivalent to (9.11c). Part (2) of the proposition
is proved. (I

9.2. Trivial monodromy: system in C2¥("'~1, The trivial monodromy con-

ditions (9.11) for the operator (9.1) are a system of equations in C¥ @ n*. Due
to Proposition 9.1(1), the variables X, i > 1 defined in (9.4) belong to C¥ @ t/,
where t is the symplectic vector space defined in (7.13) and t' = t N g’. As it was
already remarked, this implies the the total number of non-trivial variables {w, X*}
is 2N (hY — 1). By choosing an explicit basis of t, we now write the system (9.11)
as an equivalent system in C2N(7=1),

Recall the set © C h* defined in (7.15), and define

0'={aec®]|ht(a) =i}, i=0,...,hY —1. (9.16)
51



Recall the root vectors {E,,a € A} of g defined in §1.2. For o € ©, introduce the
variables x® € CV, and write X as

=Y x"®E,, i=0,... k"1, (9.17)
acB?
with x* = —1 and Ey = V. Note that we always have X1 = x% @ Ey. For

a € O define M, Sa,Ys € Endc(w) (CN) as the unique linear operators satisfying
the relations:

Mo(v) ® Eo = M(v® Ey), (9.18a)
Sa(V) @ E, = S(v® E,), (9.18b)
Yo(v) @ Eo =Y (v® E,), (9.18¢)

where M, S, Y € Endc(w) (CN ® g) were introduced in (9.9). Explicitly, for v.€ CV
we have

Mo (V) =Apg(a) (V) — Ao(1) o v + afr)v, (9.19)

4
Sa(v) :2Bht(a) (V) + gkAht(a) (V) — BO(].) oV

- §A0(1) ov+ (14 g)a(r)v, (9.20)
Yo (v) :§k2v + %kAht(a) (V) + 2By (v) + (1 + g)a(r)v. (9.21)

with a € ©. Recall the bimultiplicative function €, 5 (o, 8 € Q) defined in (1.11),
(1.12).

Proposition 9.2. Let rankg > 1, and let Ay be given by (9.6) and My, Sa,Ya
by (9.18). The trivial monodromy conditions (9.11) are equivalent to the following
system of 2hY — 2 (CN -valued) equations in the 2hY — 2 (CN-valued) variables
{w,x%|a € O}:

D x% = (k+0(r)1 — 240(1), (9.22a)

aeo!

for everya € ©%,i=1,...,hY —3:

1
Z Ca,a; on-i—ozj = Ma(xa) - 5 Z (Oé|ﬂ) x% o Xﬂ

j€lg: peot
oz+ozje®i+1
1171
3 > Cantapernsx ox L (9.22h)
s=13e€0! ~eO6°:
a—yEA
a—vy+BEA

for every o € O"'~2:

£0.0x" = 2M,(x%) — Z (o )x® o x”

Beo!

DD D tanfapensx oxt (9.22¢)



and finally
hY—1
2k +hY — 1)w = Yy(x?) — Z Z (0la)eg.ax? ™ 0 So(x)

=1 acO!

hY —2
k
- g Z Z Z Eea'ygevajg’y,ajxe_’y-‘raj o X’y, (922d)
=2

j€lp ,ye(-)i

9—'y+ozj [SYAN
where x° = —1.
Proof. System (9.22) is obtained substituting (9.17) into (9.11) and using the com-
mutation relations (1.13). O

Remark 9.3. In the case N = 1 the system (9.22) greatly simplifies. The vari-
ables x® are scalars and the operators M, Sy, Y, : C — C are just multiplication
operators independent on the variable w:

Ma(v) = (a(r) — ht(a)) v, (9.23)

Se(v) = ((1 + g)a(r) — (ht(a) + 1 + %k) ht(a)) v

Yo(v) = (%/{:2 +(1+ g)a(r) — (ht(a) + 1+ %k) ht(a)) v.

It follows that the system decouples: the first three equations are a subsystem for
the x%’s alone, and last equation yields the location of the pole w as an explicit
function of the z’s.

Let P,(N) be the number of n-coloured partitions of N. The Fock space of the
quantum g-KdV model is generatd by the action of n = rank g free fields 33, 29].
Hence the number of the states of a given level N of the quantum theory is less or
equal ® than P,(N) for arbitrary values of the parameters (r, k) € § x (0,1) of the
model, and it actually coincides with P, (N) for generic values of the parameters.
According to Conjecture 0.1, the solutions of (9.22) are in bijections with the states
of level N of quantum g—KdV. Hence, the ODE/IM conjecture impies the following
conjecture on the number of solutions of (9.22).

Conjecture 9.4. The number of solutions of (9.22) is less or equal than N'P,(N).
The set of parameters (r,k) for which the number of solutions is N!P,(N) is a
generic subset of b x (0,1).

10. EXPLICIT COMPUTATIONS

System (9.22), providing trivial monodromy conditions for the operator (9.1), is
a system of 2N (kY — 1) equations in 2N (h" — 1) unknowns, which depends on the
root structure of the algebra. In this section we provide an explicit presentation
of this system in case g = A,,n > 2,D,,n > 4, and Eg. We omit to show our
computations in the case E7, Eg due to their excessive length?. In each case, we
are able to reduce (9.22) to a system of 2N equations in 2N unknowns. Moreover,
if N = 1, we further reduce it to a single degree n polynomial equation in one
variable. This is consistent with the ODE/IM hypothesis — see Conjecture 9.4 —
since the dimensions of the level 1 subspace of the quantum g-KdV model is equal to
rank g = n, for generic values of the central charge and of the vacuum parameters.

8Lt may be less only if the Fock representation is not irreducible.

9We can furnish them to the interested reader upon request.
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10.1. The case A,, n > 2. For g of type A, we have h¥ =n+1,0 =5
and dimt = 2n. Since I \ Iy = {1,n} then from (9.10) we get

ie]aia

I
&
g
&

£

M) ==Y Ba 1a(f)

Defining
n J
ﬁ]: Z [o7% szzaia jzla7n_1 (101)
i=nt+1—j i=1

then we get © = {0,0} U {8;,v:,i =1,...,n— 1} and {E,,a € O} is a basis of t,
with Ey = 6V. Thus, (9.17) reads

-1®0Y 1 =0,
X' =0xl @Es +x"@E, i=1,....,n—1, (10.2)
x% @ Ey i=n,
and system (9.22) takes the simpler form
X0 x7 = (k+6(r)1 —240(1),
Xﬁi+1:Mﬁi(xﬁi)7Xﬁloxﬁi, i=1,...,n—2,
XW+1:7M%.(XW)+X%OXW, ,L':l’._.,n 27
n—1
¥ — 2Mgn71(xﬁ”’l) + Z xBs o xTn—s _ 9xB1 o xBn—1
s=1
n—1
_x? — 2M’Yn71(xﬁn71) + Z X7V 0 xBr—s — 9xM o xIn—1
s=1
n—1

2(n+ k)w = Yy(x?) + Y (x* i 0.8, (x7) — x7" 0 S, (x7))

i=1

n—2
2
. 259()(0) + gk Z xPBr—i o xYit1

i=1

The above system can be further simplified as follows. Introduce the polynomial
functions P;, P; : CN — CV, depending on the parameters w € CV and defined
recursively by the relations

Pi+1(x) = MBZ(Pz(X)) —Xo° Pi(x)a (10.3&)
Pi1(x) = =M, (Pi(x)) +x 0 Py(x), (10.3b)

for every x € CV, and with Py(x) = —1, ]So(x) =1,and By =y = 0.

Proposition 10.1. Let g be of type A, n > 2. The operator (9.1) with X as in
(10.2) has trivial monodromy at all we, £ =1,..., N for all values of A if and only
if:
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(1) The variables x?,x", w € CN satisfy the system

XM X = (k4 60(r)1 — 240(1), (10.4a)
znjps(xﬁl) o Py o(x") =0 (10.4b)
s=0

2n+ k)w = Yp(Po(x") + P, (x")) + = anPn (%) 0 Py (x71)

n

+Z( D)0 S5, (™)) = Pailx) 0 S5, (Bi(x™))) . (10.40)

where v, = By, = 0.
(2) The variables x* € CN, o € ©, are given in terms of X1, x" as

x% = p(xP1) i=1,...,n—1,
x%:é’(x'yl) i=1,....,n—1
<! — Pn(xﬁl) + ﬁn(x’h),

Corollary 10.2. Let N = 1. The system (10.4) admits, for genmeric values of
r € b,k € R, n solutions.

)

Proof. For N = 1, the recursion relations (10.3) can be explicitely solved. Indeed, in
this case we have x* = z® € C and the operator (9.19) reduces to the scalar operator
M, (z) = (a(r) — ht(a))z, with € C and o € ©. Noting that ht(5;) = ht(vy;) = 1,
then the polynomials

Py(x) = (—1)"! H x—Bj_1(r)+j—1), (10.5a)
Pi(x) = [[(@ = vj-a() +5 = 1) (10.5b)
j=1
satisfy (10.3) with Py(z) = —1 and Py(z) = 1 (and By = 70 = 0). Since the

polynomials P, P do not depend on the pole w;, the system (10.4) splits into a
subsystem for 21,27 and a linear equation for w = wy, the additional pole,.
Explicitly we have:

P = k4 0(r),

> (- é+1H —Biaa) +i-1) J[@" =) +i-1)=0.
5=0 j=1

Substituting the first equation in the second, one obtain a polynomial equation for
the variable 21, which has — for generic values of r and k — n distinct solutions.
Once a solution of the above system is chosen, the additional pole is given by

2(n+k)w1:§k(k+n n+1H ﬂj 1 )‘i’j*l Hz’Yl*’YJ 1()4’]*1)
j=1
2 — it1

n—1 i
+ 3 i | ()" Z“H =B +i =D [[@" =) +i-1) |,
1=1 Jj=1
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with My 6 = (1 4+ %)(’yz(r) — Bn—i(r))+ (n+1+ %k)(n —2i), and

2P = ( ”1]_[ —Bia(m)+j—-1), i=1,...,n—1,

2= [l =)+ -1, i=1.n—1,
j=1

= "“H =B +i—D)+ [[@" —va(r) +5 - 1)
j=1
O

10.2. The case D,,. For g of type D,, we have h¥ =2n—2, 0 = o +22?;22 o+
Qp—1 + ap, and dimt = 4n — 6. Since I \ Iy = {2} then from (9.10) we get

T‘-O(f = _E—Oq ZE—QN T—1 f) = _E—OtZ‘

Denoting the roots

ﬁ _ Zz+11a17 ]*1 737
! Z?ﬁlj a2 it ap1tan, j= n—l .y2n — b,

nQ_E (73] ﬁ;_zzg Q; + Qup,
=2

and

%‘{Zﬂl% j=1...,n=3,
;=

2n—j-—3 .
Zi:Q O‘z+2zz 2n—j— Qai+an71+ana j=n-1,...,2n-35,
n—2
+ ) - )
7n72fzaz+an; 7n72*204u
i=1 1=1

then we have © = {0, 8% 5, 7% ,,0} U{Bj,7j,i=1,...,n—2,...,2n — 5}. Thus,
(9.17) reads

-1®60" i=0,

x" ® E,, i =1,

xPi-1 @ B, , +x7 ® E., i=2,...,n—3,
i X’B"’s®Eﬂn73+Xﬂf72®Eﬂ+ —|—x"2®ET12 t=n—2

Xt @E, | +x7h2® E7+ +xTn—2® Ev,f , i=n-—1

xPi-1 @ Eg, | +x ® E., t=mn,...,2n —5,

xB2n—5 ® Es,, . 1=2n—4,

x? ® Ey i=2n-—3.

(10.6)
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and system (9.22) takes the form

X" = (k4 0(r))1 — 240(1),

xPi - xVirr = M (x7) — X o X i=1,...,n—4,

xPi = Mg,  (xPi-1) —xP1 o xi1, i=2,...,n—3,

+
Xﬁn73 5n 9 __ Xﬁ" 2 — MW . (X’Ynfz) _ X'Yl o X'Y'n.73
n—3

+ - _

XTn-2 —x7n-1 = M- (xan?) — X" o xPn-2
n—2

- + +
xTn—2 — xTn—1 — M[# (XBTL,Q) — XM o xPn-2
n—2

+
— xVn-2 — xTn-2 — Mg, . (x ﬁn73) — xP1 o x -3
_ Xﬂn—l _ M'y+ (X’Yn 2 _ XBl ° Xﬁ" 2
—x'@"“:M,Y xn2 —xBloxﬂ
n—2
xPi 4 xYit = M (x ) —x" ox i=n-—1,...,2n — 6,
x'@l:Mlgii( 1) — xf1 o xiot, i=mn,...,2n —5,
n—4
4 ,
Xﬁznﬂ% —_ M’Y2n75 (X’anfra) _ XBTL,Q o XBTL,Q + § x5+ o X’an75fs,
s=1
n—3 2n—>5
X0:2Mﬁ2n75( Ban— 5) + § xPs o xV2n—a-s § xBs o xY2n—1-s
= s=n—1

4
Xﬁl o xV2n—5 _ Xﬁn,g ° X’Yn,—Q _ Xﬁnfz ° X’Yn,z’

20k + 2n — 3)w = Yp(x?) + x%12 0 57372(%72) —x"-20 8,1 (xPi-2)

_ _ _ 2 _
+xPn-z2 0 S,- (xTm=2) — xTn-2 0 Sg- (xPn-2) + §kx7:f2 o xTn-2

n—2 B2
k
+ Z (Xﬁ2n4i ° (S% (X’Yi) _ gxﬁi) — xY2n—4-i o Sﬂi (Xﬁi))
=125
z#n
2 8 2 + -
+ gk(x -2 xPa- n-2) o xPn-1 — gk(x'ynf2 + xn-2) 0o xMn-1
9 n—3
_ gk (X’YZn—S—i oxPi — xPen-3-i o X’Yi)_
1=2

The above system can be simplified as follows. For o« € © and v € CV, denote by
M., the operators

Mo(v) =My(v) — (k+6(r))v+240(1) o v, (10.7)

and introduce the polynomials P;, B, : CN — CN defined by the recursion relations

Piia (%) = Pi(x) = My, (P,(x)) i
{Pi+1(X) =X0 Isz(x) — Mg, (P;(x)), >0, (10.8)

with Py(x) = 0, Py(x) = 1 and vo = Sy = 0. (In particular, from (10.8) we obtain
Pi(x) = (k+0(r))1 —2A4p(1) and P;(x) = x.) Set
My=My |,  My=M: |
n—2 Tn—2
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and consider the rational functions R+ : CV — C¥, depending parametrically on
w € CV and given by:

Ra(x) = [(My + M_)(My + M_) — 4x0] " [(My + M_) M (P, 5(x))
— 2% 0 Po_g(x) £ (M4 + M_)Py_5(x)].

Ra(x) = 5 Paa(o0) + 5 Mo (R () — 5 M (R ()

with x € C. Finally, introduce recursively the polynomials J, J:CN - CN as

T (%) = —Ji(x) + Moy, (Jo()) N
{Ji+1(X) M) —xodi, =T b 109
with
Ta1() = 5 Paca(x) — 5 M (R (x)) — 5 M_(R(x)

and define K : CN — CN as:

K(X) :2Mﬂ2n75 (J2n—5(x)) - R+(X) o §+ (X) — R_ (X) oR_ (X)

n—3
+ Z(JanﬁlfS(X) °© ]SS(X> + Ps(x) o 17271*4*5()())-

Proposition 10.3. Let g be of type D,,, n > 4. The operator (9.1) with X* as in
(10.6) has trivial monodromy at all we, £ =1,..., N for all values of \ if and only
if:

(1) The variables x, w € CN satisfy the system

n—3

> Pi(x™) 0 Jan—a—o(x") = Ry (x7) 0 R_(x") (10.10a)
s=0

2k + 20— B)w = Yy(K(x") + Ry (x") 0 S+ (Ry(x™))
~Re(x™)0 Sy (Ri(x™)+R-(x")oS _ (R_(x")

n—2

SR 08, (R() + KR () 0 R (x)

+ ;3 <J2n4i(xﬂ1> o <sw (B gpz—(xm)>  Fas(sP) 0 S PZ_(X%))

2n—>5

b3 (Prreacs)0 (85,670 = 56 ) = Prucacsl) 0 85, (6
+ %k(&(xﬁw + R (xM)) 0 Jya (xM) — §k<§+<xﬁl> + R (x")) o Jy 1 (x™)

n—3
—~ %k ; (Ln_g_i(xﬂl) o Pi(x"Y) — Jon_3_i(x") o E(xﬁl)) , (10.10b)
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(2) The variables x* € CN, o € ©, are given in terms of x5 as

X7 = Py(x"1) i=1,...,n—3,
x% = pi(xP) i=1,...,n—3,
xPi-2 = Ry (x™),

Xﬁ,g — Ri(xﬁl),

X% = Jy(x") i=n—1,...,2n—5,
xP = Ji(x™) i=n-—1,...,2n —5,
x? = K(x™).

Corollary 10.4. Let N = 1. The system (10.10) admits, for generic values of
r € b,k €R, n solutions.

Proof. Skecth of the proof. The system (10.10) splits into an algebraic equation
for the sole variable x%1 = 271, and a linear equation for w = w;. By recursively
computing the degree of the functions Pi,.J, Ry, one shows that (10.10a) is an
equation of the form (x — a)~'II,,(z”1) = 0, where a is a complex number and I,
a polynomial of degree n. The coefficients of II,,, as well as the number a, depend
on r, k, so that for generic values of these parameter the equation has exactly n
solutions. O

10.3. The case Eg. For g of type Eg we have hY = 12, 0 = a1 +2a2 + 3as + 204 +
2a5 + o, and dimt = 22. Since I\ Iy = {4} then from (9.10) we get

T‘-O(f) =—FE_ o —E-a, —E_a; —E_qy — E_q, 7T—l(f) =—-E_q,.

Denoting the roots:

"=y B1=a3+ay

Yo = a2+ az+ay B2 = a1+ az+az+ay

Y3 =g + o + s Bz =ar+az+as+as

Y4 =01+ e+ a3+ og+as Ba=az+as+as+as

V5 = + a3 + o + a5 + o Bs =a1+as+as+as+as+as
Y6 = a2 + 203 + ag + s B = a1+ az + 203 + ag + as

Y7 = a1 + 209 + 203 + ag + @ Br =as+2a3+as+as + ag

Y8 = a1+ as + 203+ ag + as + ag Bs = a1 + 22 + 203 + g + a5 + ag
Yo = a2 + 203 + g + 2005 + 6 Bo = a1 + g + 2a3 + g + 205 + a6

’}/10:&1+2042+2043+Oé4+20é5+046 510:a1+2a2+3o¢3+a4+2a5+a6
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then we have © = {0,0} U {S;,vi: i =1,...,10}. Thus, (9.17) reads

-1®0Y 1=0,
X" ® E,, i=1,
xM ® Eg, i=2,
x"”?QE, +x7?®E,, 1=3,

x%2 ® Ep, +x% @ Eg, +xP1 @ B, =4,
xNMQE, +X"QFE,, +xX%QFE, i=09,
x% @ Eg, +x% @ Egy + x77 ® Eg. i =6,
X"QE, +x®QFE,+x"QE, 1=7,

X' = (10.11)

x% @ Egy +x% @ Eg, i=38,
XM @ B i=9,
x%0 @ Eg,, i =10,
x? ® Ey i=11.

and introducing the operator

x% = le (x7),
x7? —x" = Mﬁl (XBl),
B2 _ yBs _ J/\Z’Yz (x72),
xPr — xPs = J/\Z'Ys (x73),
=X = My, (x™),
X1 = Mg, (x™),
X7 = M, (x™) 4+ M, (™) + M, (™),
2x = M, (x7°) — MM (X74) 4+ M, (x7°) + x72 0 X7 — xP1 0 xP2
2xPo = M., (x7°) Ns(x%)—l—x'yzoxw—xﬂloxﬁg,

(X’Ys) —x"2 ox 4 <P o Xﬂs’

5

2x7 = — M (x7°) + MM (x™) + M.
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X7 = MgS (xP5) + M, (xP6) + xP2 o x7 — xP1 o x4,
X7 = MgS (xP5) — Mg, (xP7) — x72 o xP1 4 xM 0 xP5,
xPe = M, (x77) + x72 0 x7 — xP2 0 xP2
xP = M, (x7°) + x% o xPr — x72 0 x5,
M’YS (X’Y9) =x" ox 4 X" oxV5 — xP2 o xP3 — xP3 o xP1 — xP2 o xP1
—xMox’ — M'Y7(X’Y7) - M’YS (X’Yg)ﬂ
2x710 = Mp, (x79) — Mp, (x7%) 4+ xP4 0 x4 — x5 0 x73 — xP2 0 x75 4 x72 0 x5,
Mg, (Xﬁs) _ 7Mg9 (Xﬁy) _ P o x + %P5 0 x3 — xP?2 o x5 +x70 Xﬂs,’
<P — M.

o (X’Ylo) FxVox” — XBS o XﬂE)’

5
<0 — Mg, (Xﬁlo) + Z(X’Yi o xPii—i _ - o Xﬁi)7
=1
11
2(/{3 + 11)W _ Y@(XG) + Z (Xﬁuﬂ' o S’Yi (X%) — xMi-i g Sﬂi (Xﬂi))

i=1
B %k(xﬁl o x4 xM0 o (x78 — x72) + x o (x7 — x)
+xPs o (XB3 _ XB4) + X780 (x5 — X7t — x76) 4 X7 o x™

— X o X7 +Xﬂ5 o xPe + %P6 o xP7 — xP5 o Xﬁ7).

11. THE sly CASE.

The case when g is of type A;, namely the Lie algebra sly(C), requires a separate
approach, essentially due to the fact that only in this case the spectrum of ad #¥ in
the adjoint representation does not contain 41, and it is thus given by

o(0¥) = {~2,0,2} . (11.1)

Since this case was already considered in [8] and in [20] (see also [21]), in this
section we merely show that our approach is equivalent. To this aim we work with
quantum KdV opers in the canonical form (4.11), which is actually simpler in this
particular case. A simple computations shows that operator (4.11) reads

Lo=0, + (0 ”(z)) , (11.2)

1 0
with
ri(rp—1) 1 N 2 s(J)
1\"1 = k
v(e) 2 TpT +Z((zw;‘)2+2(zw;‘>)
Jj=1
Here 7y is an arbitrary complex number, —2 < k = —k — 1 < —1, and s(4),7 =

1,... N are free parameters to be determined. The equation £y = 0, in the first
fundamental representation, can be written in the form of a second order differential
equation

P"(2) = v(2)Y(2) - (11.3)
It is well known that the operator (11.2) has trivial monodromy at w; if and only
if the Frobenius expansion of the dominat solution ¢_ = (z — w;)~(1 + O(z)) of
the latter equation does not contain logarithm terms. This condition imposes a
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polynomial relation among the first few terms of the Laurent expansion of v at z;.
Indeed, denoting

v(z) = + +b(j) + c(4) (2 — wj) + O((z — w;)?),

(z—w;)?  z—w,

the trivial monodromy condition reads

3
a(j Ny . )
- (4) +a(i)b(j) —c(j)=0 j=1,...,N. (11.4)
We notice that the coefficients b(j), c(j) are affine functions of Al Since the equation
(11.4) is required to hold for any A, then we can separate f#Jra(j)b(j)fc(j) into

a constant part (in A) and a linear part (in A), and both parts vanish identically.
The linear part reads

. k
a(])wé'c = 0,
J

from which we deduce that a(j) = 5; equivalently
s(j) = k. (11.5)
After some algebraic manipulations, the constant part reads

we((k + 2)%w] — k(2k 4 5)wew; + k(k + 1)w?)

(we — wy)3

, (11.6)

with A = ’1—3 +k(k+1)— (k4+2)r1(r1 —1). The latter system provides the position
of the poles, and thus, together with (11.5), fully determines the sly quantum KdV
opers (11.2).

Remark 11.1. The operator (11.2) (with r; = —£), subject to the relations (11.5)
and (11.6), was shown in [20, §5.5, §5.7] to coincide — after the change of coordinates
z = %)21'2*% — with the operator with ‘monster potential’ originally proposed
in [8, equations(1,3)].

Remark 11.2. According to the general theory developed in Section 6, we can write
operator in the the form (9.1). This reads

Ezaz+(r11/z 1/z+xzk)+§:;(01 ze({-)/z), aLm

77’1/2: =1 ,2,’*’([}‘7

where 29(j) = k + 2 — 23 s

wj—wyg "

APPENDIX. FROBENIUS SOLUTIONS

Here we prove Proposition 5.10. We give full details in the case when the set
of additional singularities {w,};c; is empty (i.e. the ground state), omitting a few
details of the general case to the reader. We recall the proposition for convenience
of the reader.
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Proposition. 5.10. Let k be irrational and (r, lgz) be a generic pair. Let (w(r —
oY), xw) be an eigenpair composed of an eigenvalue and a corresponding eigenvector
of f —pY + 7 in L(w;). A unique solution in V*¥()\) is determined by the expansion

Xw(z,A) = zfpvzf‘”(rfpv)F(z,/\z*ic), (11.8)

where F(z,() is an L(w;)—valued function which satisfies lim, o F (2, \z"%) = x4
The function F(z,() is analytic in z at z = 0, and an entire function of ¢, and it
admits an analytic extension to an analytic function on (C\ {w;};cs) x C. In the
case of the ground state, F' is an entire functions of the two variables.

Proof. The matrix r + f — pV has the same spectrum as f — p¥, and due to the

genericty assumption the eigenvalue w(r — pV) is simple. In order to study the
equation £ = 0, with £ given by (4.11), we first apply the gauge transform 2z pv,
to get

d;

aZ"'TipVJrf"'( — Az Hk 69+ZZZ d+1l ¥(2) =0,

z
jeJ i=1 1=0

where ¢(2) = z"vz/)(z). To simplify our notation, we write

3 —>z

jeJi=1 z:o k>0

Note that the above power series has radius of convergence min;e s |w;|. We then
look for a solution of the latter equation in the form of the Frobenius-like series

) =20 N e+ Y ™ (AT, (11.9)
m,neN2\(0,0)

Applying the operator £ to (11.9) we obtain the recursion

m—1
(r=p"+f=w(r—p")+m=nk)cmn+focm—1n+ P $kCm—1—kn—fotm-1n-1=0,
k=0
(11.10)
where co = 1, and c_1,, = ¢y,—1 = 0 for all m,n. It is readily seen that the

recursion has a unique solution and that ¢, , = 0 if n > m. The latter identity
implies that if the series converges then the function

Fz)=t¢u+ Y,  cmnz"C" (11.11)

m,n€N2\(0,0)

satisfies lim, o F'(z, z*fc)\) = 1.

We now address the convergence of the series in the case when s = 0 for every
k, namely the ground state case, and omit the same discussion for the general case.
We choose a norm || - || on L(w;) such that ||¢,]] = 1 and denote by || - | also
the corresponding operator norm. Because of the genericity condition on (r, l;:),
the matrix 7 — p¥ + f — w(r — p¥) + m 4+ n(k — 1) is invertible. Since moreover
m —nk > k, for all m,n # (0,0),m > n, there exist p, K < oo such that
p K

S ~ fO S_
sl <2

—1

(¢ — w(f) +m — nk)

Because of the above inequalities, we get

||Cm—1,n|| + Hcm—l,n—l I

m — nk
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and due to Lemma 11.3 below, we have that
dwl
> Nemallz ™l < 1 - HEHE
m,n#(0,0)
The latter estimate implies that F(z,() given by (11.11) is an entire function of
z,(. Substituting ¢ = A\z~*, we have

k ALzt F
D7 llemmllz™AzTFm < 1 — R
m,n#(0,0)
from which it follows immediately that lim,_,o F'(z, /\z*f“) — . -

Lemma 11.3. Let d be a real function of two integer variables m,n € N that
satisfies the recursion

dm— n dm— n—
K 1,n T 1,n—1

) >_1a
m + ngq 1

dm,n =

where, in the above formula d_1 ., = 0,dp,,—1 =0 for all m,n. Then
Km

14+ ¢)"(m —n)n!’

7 dmna™y" = do o™ ) L (1112)

dm,n = d0,0(
m,neN

In particular dp, n, = 0 if n > m.

Proof. We make the following change of basis in the Z? lattice: m’ = m—n,n’ = n,
d/ ! /+d/ ’ ’

: : / _ m/—1,n m/ n!—1 : : _
to obtain the new recursion dm,m, = K—m,+n,(1+q) . It is easily seen that the re
: : : ! ! g™+ U m’, n
cursion has the unique solution d;,,, ,,, = 0.0 (T3g) " it and ), o dy 2™yt =
A .
1 oe” 4. The thesis follows. O
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