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Abstract. We study the distribution of singularities (poles and zeros) of rational solutions
of the Painlevé IV equation by means of the isomonodromic deformation method. Singu-
larities are expressed in terms of the roots of generalised Hermite Hm,n and generalised
Okamoto Qm,n polynomials. We show that roots of generalised Hermite and Okamoto poly-
nomials are described by an inverse monodromy problem for an anharmonic oscillator of
degree two. As a consequence they turn out to be classified by the monodromy represen-
tation of a class of meromorphic functions with a finite number of singularities introduced
by Nevanlinna. We compute the asymptotic distribution of roots of the generalised Hermite
polynomials in the asymptotic regime when m is large and n fixed.
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1 Introduction

In this paper we address, by means of the isomonodromic deformation method [22, 27, 28],
the distribution of movable singularities (which are zeros and poles) of rational solutions of the
fourth Painlevé equation, also called Painlevé IV and denoted by PIV, which is the following
second order differential equation,

ωzz =
1

2ω
ω2
z +

3

2
ω3 + 4zω2 + 2

(
z2 + 1− 2θ∞

)
ω − 8θ2

0

ω
, θ := (θ0, θ∞) ∈ C2. (1.1)

We sometimes write PIV(θ) to stipulate the particular parameter values in consideration.
PIV is one of the famous six Painlevé equations, all of which have had an enormous impact in

several branches of science, including mathematical physics, algebraic geometry, applied math-
ematics, fluid dynamics and statistical mechanics, see, e.g., [11, 12, 23] and references therein.

Special solutions, such as rational solutions, and the distribution of movable singularities have
proven to be particularly important in applications and were thoroughly studied by means of
ad-hoc methods which are unavailable for regular values or generic solutions; see, e.g., [2, 9, 13,
37, 45] and references therein. In the case under consideration, we will show that singularities
of rational solutions of Painlevé IV are characterised by the monodromy representation of three

This paper is a contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei
Kapaev. The full collection is available at https://www.emis.de/journals/SIGMA/Kapaev.html
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particular classes of meromorphic functions (introduced by Nevanlinna [44]) with a finite number
of critical points and transcendental singularities.

One of the most striking features of solutions of Painlevé equations is that their value distribu-
tions are often observed to describe some approximate lattice structure, as was first discovered
by Boutroux [3] for solutions of Painlevé I and II. This is also the case for singularities of
Painlevé IV rationals. Indeed one of the main inspirations of our work is the highly regular
pattern of their distribution, which was observed by Clarkson [8] (see [51] for more general solu-
tions), and which has so far eluded any rigorous clarification. By computing the distribution of
singularities in a particular asymptotic regime we furnish here the first rigorous, albeit partial,
explanation1.

For the sake of clarity of our exposition, before introducing our main results together with
an outline of the article, we briefly review some well-known facts from the theory of movable
singularities and rational solutions of Painlevé IV.

1.1 Zeros and poles of solutions

The Painlevé property implies that any local solution of PIV has a unique meromorphic con-
tinuation to the entire complex plane [55]. As a consequence the solution space is the set of
meromorphic functions on C that satisfy (1.1), which we denote by

Wθ = {PIV(θ) transcendents}. (1.2)

Upon fixing an a ∈ C, any Painlevé IV transcendent (i.e., solution) enjoys a Laurent expansion
at this point. In particular the generic Laurent expansion takes the form

ω(z) = b+ c(z − a) + ω2(z − a)2 + ω3(z − a)3 +O
(
(z − a)4

)
, (1.3)

for b ∈ C∗ and c ∈ C, where the higher order coefficients are of the form ωn = 1
bpn, with pn

polynomial in a, b, c, θ for n ≥ 2. However this expansion breaks down when ω(a) ∈ {0,∞},
i.e., ω has a zero or pole at z = a, in which case the Laurent expansions take the respective
forms

ω(z) = 4εθ0(z − a) + b(z − a)2 + ω3(z − a)3 +O
(
(z − a)4

)
, ε = ±1, (1.4)

where we refer to the value of ε as the sign of the zero, or

ω(z) =
ε

z − a
− a+ ω1(z − a) + b(z − a)2 + ω3(z − a)3 +O

(
(z − a)4

)
, ε = ±1, (1.5)

where ω1 = 1
3ε(a

2 − 2 + 4(θ∞ − ε)), in both cases b ∈ C, and all higher order coefficients have
polynomial dependence on a, b, θ; conversely, for any choice of parameters the Laurent series
(1.3)–(1.5) converge locally to a solution of PIV. Indeed, one can find a positive constant Ca,b
such that |ωn| ≤ Cna,b, for n ≥ 3, and thus the formal power-series actually has a non-zero radius
of convergence, see, e.g., [21, 26].

From an algebro-geometric point of view [29, 48], it is clear that zeros and poles of PIV

transcendents play a fundamentally distinguished role; they are the movable singularities of
solutions.

1We notice that the same question for Painlevé II rationals has recently been settled by many authors with
a wealth of different methods [2, 5, 6, 41, 52, 53].
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ω
(I)
m,n ω

(II)
m,n ω

(III)
m,n ω̃m,n

R1 ω
(I)
m+1,n−1 ω

(II)
m−1,n ω

(III)
m−1,n ω̃m+1,n−1

R2 ω
(I)
m−1,n+1 ω

(II)
m+1,n ω

(III)
m+1,n ω̃m−1,n+1

R3 ω
(I)
m,n+1 ω

(II)
m+1,n−1 ω

(III)
m,n+1 ω̃m,n+1

R4 ω
(I)
m,n−1 ω

(II)
m−1,n+1 ω

(III)
m,n−1 ω̃m,n−1

Table 1. Action of Bäcklund transformations on rational solutions of PIV.

1.2 Rational solutions

Firstly, let us remark that PIV enjoys various Bäcklund transformations, which relate solutions
with different parameter values. In particular we have transformations R1–R4, see Appendix B
for their definitions, which allow us to relate the solution spaces Wθ and Wθ′ whenever θ− θ′ ∈
Z2 ∪ (Z + 1

2)2.

Painlevé IV admits a rational solution if and only if the parameters satisfy either

θ∞ ∈ 1
2Z, θ0 − θ∞ ∈ Z, (1.6)

or

θ∞ ∈ 1
2Z, θ0 − θ∞ ∈ Z± 2

3 . (1.7)

Furthermore for any such parameter values the associated rational solution is unique [25, 34,
43]. Using the τ -function formalism, Noumi and Yamada [46] expressed these rational solu-
tions conveniently in terms of generalised Hermite Hm,n(z) and generalised Okamoto polyno-
mials Qm,n(z), see Appendix A for their precise definition.

Firstly, the parameter cases (1.6), up to equivalence θ0 ↔ −θ0, are given by

ω(I)
m,n =

d

dz
log

Hm+1,n

Hm,n
, θ0 = 1

2n, θ∞ = m+ 1
2n+ 1, (1.8a)

ω(II)
m,n =

d

dz
log

Hm,n

Hm,n+1
, θ0 = 1

2m, θ∞ = −1
2m− n, (1.8b)

ω(III)
m,n = −2z +

d

dz
log

Hm,n+1

Hm+1,n
, θ0 = 1

2(m+ n+ 1), θ∞ = 1
2(n−m+ 1), (1.8c)

where m,n ∈ N, which we refer to as the Hermite I, II and III families respectively. Some
particularly simple members of these respective families are

ω
(I)
0,1 =

1

z
, θ0 = 1

2 , θ∞ = 3
2 , (1.9a)

ω
(II)
1,0 = −1

z
, θ0 = 1

2 , θ∞ = −1
2 , (1.9b)

ω
(III)
0,0 = −2z, θ0 = 1

2 , θ∞ = 1
2 , (1.9c)

and the other ones can be obtained via application of the Bäcklund transformations R1–R4, as
depicted in Table 1.

Secondly, the parameter cases (1.7), up to equivalence θ0 ↔ −θ0, are given by

ω̃m,n = −2

3
z +

d

dz
log

Qm+1,n

Qm,n
, θ0 = −1

6 + 1
2n, θ∞ = 1

2(2m+ n+ 1), (1.10)
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zeros (ε = +1) zeros (ε = −1) poles (ε = +1) poles (ε = −1)

ω
(I)
m,n Hm+1,n−1 Hm,n+1 Hm+1,n Hm,n

ω
(II)
m,n Hm−1,n+1 Hm+1,n Hm,n Hm,n+1

ω
(III)
m,n Hm,n Hm+1,n+1 Hm,n+1 Hm+1,n

ω̃m,n Qm+1,n−1 Qm,n+1 Qm+1,n Qm,n

Table 2. The zeros and poles of rational solutions in terms of generalised Hermite and Okamoto poly-

nomials. As an example, poles with residue ε = +1 of ω
(III)
m,n coincide with the roots of Hm,n+1. The table

is computed using equations (1.8) and (1.10) and the action of the Bäcklund transformations (B.1).

where m,n ∈ Z, which we refer to as the Okamoto family. A particularly simple member of the
Okamoto family, is given by

ω̃0,0 = −2
3z, θ0 = −1

6 , θ∞ = 1
2 .

and again the other ones can be obtained via application of the Bäcklund transformations
R1–R4, as Table 1 shows.

Remarkably, all zeros and poles of rational solutions can be expressed as roots of the gene-
ralised Hermite and Okamoto polynomials, see Table 2. Therefore the study of the distribution
of movable singularities of PIV rationals is reduced to that of zeros of the generalised Hermite
and Okamoto polynomials.

1.3 Outline and main results

In Section 2 we recall the isomonodromic deformation interpretation of Painlevé IV, via the
Garnier–Jimbo–Miwa Lax pair. The Riemann–Hilbert correspondence associates bijectively
any solution of Painlevé IV to a unique monodromy datum of the Garnier–Jimbo–Miwa linear
system; given a point z in the complex plane and a solution ω of PIV, the inverse monodromy
problem furnishes the value ω(z) unless z is a zero or a pole, in which cases the inverse mon-
odromy problem for the linear system does not have any solution.

However, following [37], we show that the inverse monodromy problem can be defined in case
of zeros and poles, and in fact it simplifies to that of the anharmonic oscillator

ψ′′(λ) = V (λ; a, b, θ)ψ(λ),

V (λ; a, b, θ) = λ2 + 2aλ+ a2 + 2(1− θ∞)−
[
b+

(
2θ∞ − 1

2

)
a
]
λ−1 +

(
θ2

0 − 1
4

)
λ−2.

The main result of this section is that the aforementioned simplification allows us the characterise
zeros and poles of rational solutions exactly as the solutions of an inverse monodromy problem
concerning the anharmonic oscillator in question; see Theorem 2.2.

According to the beautiful theory developed by Nevanlinna and his school [14, 44], anhar-
monic oscillators (in case all singularities in the complex plane are Fuchsian and apparent)
naturally define Riemann surfaces which are infinitely-sheeted coverings of the Riemann sphere
uniformised by meromorphic functions. In Section 3 we define three families of such Nevanlinna
functions and show how they classify the zeros and poles of rational solutions. This characteri-
sation is rather powerful, as an easy corollary gives us the solution to a previously open problem,
namely to determine exactly the number of real roots of the generalised Hermite polynomials;
see Corollary 3.5.

Finally, in Section 4 we study the asymptotic distribution of zeros of the generalised Her-
mite polynomials Hm,n, and hence zeros and poles of corresponding rational solutions in the
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asymptotic regime m → ∞ and n bounded. In order to state precisely our main result we
need to introduce some new notation and functions. First of all, as we will find that the roots
grow like (2m+ n)

1
2 , it is convenient in our analysis to work with the new unknown α and ‘big

parameter’ E, defined by

α = E−
1
2a, E = 2m+ n. (1.11)

The m · n roots of Hm,n(z) turn out to be organised in n approximately horizontal lines. We
parametrise these lines by the set

Jn := {−n+ 1,−n+ 3, . . . , n− 3, n− 1},

and introduce the real functions

f : [−1, 1]→ [−π
4 ,

π
4 ], f(x) = 1

2

(
x(1− x2)

1
2 − cos−1(x)

)
+
π

4
,

gj,E : (−1, 1)→ R, gj,E(x) =
2j log

(
2E

1
2

(
1− x2

) 3
4
)
− logFn,j

2E(1− x2)
1
2

,

where j ∈ Jn and the constant Fn,j is defined by

Fn,j =
Γ
[

1
2(1 + n+ j)

]
Γ
[

1
2(1 + n− j)

] . (1.12)

Notice that f is strictly monotone and therefore globally invertible. Finally, we define our
approximate (rescaled) roots α.

Definition 1.1. For every k, with |k| ≤ E
4 and k integer if m is odd or half-integer if m is even,

and every j ∈ Jn, we define the approximate root αj,k = αR + iαI , with αR, αI ∈ R, as the
unique complex number determined by the following relations

f(αR) =
πk

E
, αR ∈ (−1, 1), (1.13a)

αI = gj,E(αR). (1.13b)

The points αj,k are the dominant term in the asymptotic expansion of the (rescaled) roots
belonging to the ’bulk’, as it is pictorially illustrated in Fig. 1 below.

Figure 1. Rescaled roots of H40,5. In blue numerically exact location, in red the asymptotic approxi-

mation αj,k. In purple the curves =α = gj,E(<α), E = 85, j ∈ J5.

We consider two cases of ’bulk’ behaviour. In the first case we compute the error in the
approximation when we limit the real part of the roots to a fixed closed subinterval of (−1, 1).
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Theorem 1.2. Fix 0 < σ < 1
4 . There exist a constant E0 and a constant Cσ such that, if

E ≥ E0, then for all |k| ≤ σE, the polynomial Hm,n(z) has one and only one zero in each disc

of the form
∣∣z − E 1

2αj,k
∣∣ ≤ CσE− 5

6 .

In the second case, we suppose that the real part of the (rescaled) roots belong to a closed
subinterval of (−1, 1), which is growing to the full interval at some restricted rate, as E becomes
large. An interval of the kind

[
−1 + cE−1+δ, 1− cE−1+δ

]
for some c > 0 and δ > 1

3 .

Theorem 1.3. Fix 1
3 < δ ≤ 1 and s > 0. There exist a constant E0 and a constant Cs such

that, if E ≥ E0, then for all |k| ≤
(

1
4 − sE

− 3
2

(1−δ))E, the polynomial Hm,n(z) has one and only

one zero in each disc of the form |z − E
1
2αj,k| ≤ CsE−δ+

1
6 .

In Fig. 2 the error estimates in Theorems 1.2 and 1.3 are visualised. In particular they
showcase that the bounds are optimal.

m = 8 m = 16 m = 100 m = 144

Bulk. Rescaled asymptotic approximation α4,k of root of Hm,5

(
E

1
2 z
)

in red, en-

circled with a circle of radius CσE
− 4

3 , where Cσ = 1
3 and k := m+2

4 ∼ 1
8E as

E → ∞, for ranging values of m. In blue the corresponding numerically exact

location, confirming the error estimate in Theorem 1.2.

m = 8 m = 16 m = 100 m = 144

Approaching the edge. Asymptotic approximation α4,k of root of Hm,5

(
E

1
2 z
)

in red, encircled with two circles of radii CσE
− 4

3 and CsE
−1, where Cσ = Cs =

1
12 and k :=

⌊
1
4E − E

1
2

⌋
+ 1

2 ∼
1
4E as E → ∞, for ranging values of m. In

blue the corresponding numerically exact location, confirming the error estimate in

Theorem 1.3 with s = 1 and δ = 2
3 .

Figure 2. Graphical illustration of errors in Theorems 1.2 and 1.3.

We end the introduction with a few remarks on our asymptotic results.

Remark 1.4. Notice that equation (1.13a) for the location of the real part of the zeros
of Hm,n(z) coincides with the equation describing the asymptotic location of the zeros of the
standard Hermite polynomials [16, Section 10.17].

Remark 1.5. Suppose that the index k in αj,k is bounded by a number independent on E,
namely |k| ≤ k0 for some k0 ∈ N, then the points αj,k belong to the regular lattice

αR =
kπ

E
+O

(
E−2

)
, αI =

j log
(
2E

1
2

)
− 1

2 logFn,j

E
+O

(
E−2

)
,

in the large E limit. This explains the lattice-like pattern numerically observed in [8].
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Remark 1.6. Our approximation scheme includes all zeros, except for a set which asymptoti-
cally has probability measure zero. Indeed let N(A,B) be the counting function for −∞ < A ≤
B <∞ defined as follows: set NE(A,B) equal to the number of rescaled roots whose real part
belong to the interval [A,B], divided by m = E−n

2 , and define N(A,B) = lim
E→∞

NE(A,B). An

easy computation, based on the identity f ′(x) =
√

1− x2, shows that

N(A,B) =

∫ B

A

2n

π

√
1− x2χ[−1,1](x)dx.

Here χ[−1,1] is the characteristic function of the interval [−1, 1]. This is a manifestation of
Wigner’s celebrated semi-circle law. This behaviour was conjectured in [20].

Remark 1.7. Even though after Theorems 1.2 and 1.3 the bulk of the interval (−1, 1) contains
the real part of almost all roots of the generalised Hermite polynomials in the asymptotic regime
under consideration, there are roots which converge to the edge of the fundamental domain too
fast for the hypothesis of Theorem 1.3. In fact, their real part coalesce with ±1 with speed E−

2
3 .

These roots will be briefly discussed in Section 4.6 at the end of the paper where we show that
their distribution is governed by an Airy-like behaviour.

Remark 1.8. While we were finalising the present paper, the paper [4] by R. Buckingham
appeared on the arXiv. This contains the asymptotic analysis, in the regime m→∞, mn = r, of
rational solutions of Hermite type in the ‘pole-free’ region. Even though [4] does not address the
distribution of poles and zeros, it contests the results of [47] about the distribution of singularities
in the regime m = n� 0. The paper [47] was however already peer-reviewed. Since we are not
able to judge on this matter, we await for the answer of its authors.

2 Poles of rational solutions and anharmonic oscillators

It is well-known that Painlevé equations can be realised as isomonodromic deformations of
linear systems. This section is dedicated to, using aforementioned formalism, giving an exact
characterisation of poles of rational solutions in terms of anharmonic oscillators satisfying some
prescribed constraints. Let us consider the following quadratic oscillators with centrifugal terms,

ψ′′(λ) = V (λ; a, b, θ)ψ(λ),

V (λ; a, b, θ) = λ2 + 2aλ+ a2 + 2(1− θ∞)−
[
b+

(
2θ∞ − 1

2

)
a
]
λ−1 +

(
θ2

0 − 1
4

)
λ−2, (2.1)

where a, b ∈ C and θ = (θ0, θ∞) ∈ C∗ × C. Without loss of generality, we may always assume
<[θ0] ≥ 0, because of the invariance of (2.1) under θ0 7→ −θ0.

Now note that λ = 0 is a regular singular point with indices 1
2±θ0, and there generically exist

two linearly independent solutions ψ±(λ), with corresponding Frobenius expansions, uniquely
defined by the asymptotic behaviour at zero. However, in the resonant case θ0 = 1

2n ∈
1
2N
∗, the

Frobenius expansion of the dominant solution is not uniquely defined by its behaviour in zero
ψ−(λ) ∼ λ

1
2
−θ0 as λ→ 0, and logarithmic terms may appear. Indeed, we have

ψ+(λ) = λ
1
2 +θ0(1 +O(λ)), λ→ 0,

ψ−(λ) = c log(λ)ψ+(λ) + λ
1
2−θ0

(
1 +

∑
k≥1

ckλ
k

)
,

where the constant c and ck’s are uniquely defined by imposing cn = 0.
For convenience of the reader we recall the definition of an apparent singularity, a concept of

remarkable importance for the rest of the paper.
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Definition 2.1. A resonant regular singularity of a second order linear ODE is called apparent,
if the dominant solution ψ+ does not have any logarithmic contribution.

Similarly, in the case of a first order system of linear ODEs, we say that a regular singularity
is apparent, if the monodromy about the singularity is a scalar multiple of the identity.

In turn, equation (2.1) has an irregular singularity at λ = ∞, hence solutions exhibit the
Stokes phenomenon, which we discuss briefly. For each k ∈ Z4, we define the Stokes sector

Ωk = e
kπi
4 Ω0, where Ω0 = {−π

4 < arg λ < π
4 }. In each Stokes sector there exists an (up to

normalisation) unique subdominant solution ψk(λ), which decays exponentially as λ → ∞ in
this sector.

Fixing the principal branch for powers of λ in the λ-plane, with respect to the branch cut
arg λ = −π

4 , and denoting

g(λ, z) = 1
2λ

2 + zλ, (2.2)

we fix the following normalisation of the subdominant solution ψk(λ),

ψk(λ) =


(
1 +O

(
λ−1

))
eg(λ,a)

(
1
λ

)−1
2 +θ∞ if k is odd,(

−1
2 +O

(
λ−1

))
e−g(λ,a)

(
1
λ

)3
2−θ∞ if k is even,

(2.3)

as λ→∞ in Ωk, for k ∈ Z4.

We write ψ ≡ φ, for solutions of (2.1), iff they are linearly dependent.

We have the three following characterisations of roots of Hermite polynomials Hm,n, i.e.,
zeros and poles of rational solutions of Hermite type, via an inverse monodromy problem for the
anharmonic oscillator (2.1).

Theorem 2.2. Fix m,n ∈ N∗, then z = a is a zero of the generalised Hermite polyno-
mial Hm,n(z), is equivalent to any of the following three statements:

H.1: There exists b ∈ C (a fortiori unique), such that the anharmonic oscillator (2.1) with
θ0 = 1

2n and θ∞ = m+ 1 + 1
2n, has an apparent singularity at λ = 0, and the subdominant

solution at λ =∞ in Ω0, is also subdominant at λ = 0, i.e., ψ0(λ) ≡ ψ+(λ).

Furthermore, in such case, it turns out that ψ0(λ) ≡ ψ2(λ) and

ψ0(λ) = λ
1
2

(n+1)e−g(λ,a)p(λ),

where p(λ) is a polynomial of degree m−1 with no repeated roots and p(0) 6= 0, and g(λ, z)
is as def ined in (2.2). This in particular implies that ψ0(λ) has exactly m − 1 nonzero
simple roots in the complex plane.

H.2: There exists b ∈ C (a fortiori unique), such that the anharmonic oscillator (2.1) with
θ0 = 1

2m and θ∞ = 1− 1
2m−n, has an apparent singularity at λ = 0, and the subdominant

solution at λ =∞ in Ω1, is also subdominant at λ = 0, i.e., ψ1(λ) ≡ ψ+(λ).

Furthermore, in such case, it turns out ψ1(λ) ≡ ψ3(λ) and

ψ1(λ) = λ
1
2

(m+1)eg(λ,a)p(λ),

where p(λ) is a polynomial of degree n−1 with no repeated roots and p(0) 6= 0, and g(λ, z)
is as def ined in (2.2). This in particular implies that ψ1(λ) has exactly n − 1 nonzero
simple roots in the complex plane.
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H.3: There exists b ∈ C (a fortiori unique), such that, for the anharmonic oscillator (2.1) with
θ0 = 1

2(m + n) and θ∞ = 1
2(n −m + 2), subdominant solutions near λ = ∞ in opposite

Stokes sectors are linearly dependent, i.e., ψ0(λ) ≡ ψ2(λ) and ψ1(λ) ≡ ψ3(λ).

Furthermore, in such case, it turns out that λ = 0 is an apparent singularity and

ψ0(λ) = λ−
m+n−1

2 e−g(λ,a)p(λ), ψ1(λ) = λ−
m+n−1

2 eg(λ,a)q(λ),

where p(λ) and q(λ) are polynomials of degree n−1 and m−1 respectively without repeated
roots and p(0), q(0) 6= 0, and g(λ, z) is as def ined in (2.2). This in particular implies
that ψ0(λ) and ψ1(λ) have exactly n − 1 and m − 1 nonzero simple roots in the complex
plane respectively.

To state the corresponding theorem for Okamoto rationals, we briefly discuss the Stokes
multipliers for the anharmonic oscillator (2.1). If k = 1, 2, then the asymptotic characterisa-
tion (2.3) of the solution ψk(λ) is in fact valid on the larger sector Ωk+1 ∪Ωk ∪Ωk−1. It follows
that {ψk, ψk−1} is necessarily linearly independent and hence forms a basis of solutions of (2.1).
Comparison of the asymptotic behaviour in Ωk as λ→∞, of ψk+1 and the basis elements, leads
to the relation

ψk+1(λ) = ψk−1(λ) + skψk(λ), k = 1, 2 (2.4)

for a unique sk ∈ C, called the kth Stokes multiplier. Appropriately modifying the above
argument for the k = 0, 3 cases, due to the choice of branch in the λ-plane, leads to

ψ0(λ) = −e−πiθ∞
(
ψ2

(
e2πiλ

)
+ s3ψ3

(
e2πiλ

))
, (2.5a)

ψ1(λ) = −eπiθ∞ψ3

(
e2πiλ

)
+ s0ψ0(λ). (2.5b)

for unique s0, s3 ∈ C.
We have the following characterisation of roots of the generalised Okamoto polynomials, or

equivalently of zeros and poles of rational solutions of Okamoto type.

Theorem 2.3. Fix m,n ∈ Z, then z = a is a zero of the generalised Okamoto polyno-
mial Qm,n(z), if and only if there exists b ∈ C, such that the Stokes data of the anharmonic
oscillator (2.1) with θ0 = 1

2n−
1
6 and θ∞ = 1

2(2m+ n+ 1), satisfy

s0 = s2, s1 = s3, s0s1 + 1 = 0.

The remainder of this section is dedicated to the proofs of Theorems 2.2 and 2.3. In Sec-
tion 2.1 we discuss the realisation of PIV as an isomonodromic deformation. Then, in Section 2.2
we show that, upon localising the isomonodromic system near poles, we arrive at the anharmonic
oscillator (2.1), while preserving the monodromy of the system. This allows us to characterise
poles of PIV transcendents as solutions of certain inverse monodromy problems concerning the
anharmonic oscillator, in particular leading to proofs of the aforementioned theorems in Sec-
tion 2.3.

Remark 2.4. In recent literature some special interest is given to anharmonic oscillators for
which one solution is expressible in closed form as a polynomial (or rational function) times an
exponential function. These are called quasi exactly solvable potentials [1, 56]. We remark here
that, by Theorem 2.2 (see [35] for some similar considerations), all three types of oscillators
related to the roots of generalised Hermite polynomials are quasi exactly solvable in this sense.
Moreover, the type III case is particularly special as all solutions are expressible in terms of
a linear combination of rational functions times an exponential and hence deserve to be called
super quasi exactly solvable. It is interesting to note that, while quasi exactly solvable potentials
are mostly studied with the help of the sl2 Lie algebra, in the present case they are related to

Bäcklund transformations of PIV, which form the affine Weyl group of type A
(1)
2 = sl

(1)
3 (C) [45].
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2.1 The Garnier–Jimbo–Miwa Lax pair

In this section, we introduce the isomonodromic deformation method for PIV, as developed
by Kitaev [32], Ablowitz et al. [24] and Kapaev [30, 31]. The main aim of this section, is to
characterise rational solutions by means of monodromy data of an associated linear problem.

Jimbo and Miwa [28] realised PIV as the compatibility condition of the following two linear
differential systems

Yλ(λ, z) =

 λ+ z + λ−1(θ0 − v) u
(

1− ω

2λ

)
2

u

(
v − θ0 − θ∞ +

v

λω
(v − 2θ0)

)
−λ− z − λ−1(θ0 − v)

Y (λ, z), (2.6a)

Yz(λ, z) =

(
λ u

2

u
(v − θ0 − θ∞) −λ

)
Y (λ, z), (2.6b)

where u is an auxiliary function satisfying

uz
u

= −ω − 2z, (2.7)

and v is defined by

4v = −ωz + ω2 + 2zω + 4θ0.

That is, Yλz = Yzλ implies that ω and u satisfy PIV(θ) and (2.7) respectively.

Note that the linear system (2.6a), associated to PIV, is not defined at zeros and poles
of ω. To study what happens near such points, we follow the strategy pioneered by A. Its
and V. Novoskhenov for Painlevé II [27], and then employed by one of the authors [36, 37] for
Painlevé I, see also [7]. It turns out that, even though the matrix linear system associated to
PIV is not defined at zeros and poles, on the contrary its scalar version has a well-defined limit.
We consider the equivalent 2nd order scalar differential equation for the gauged first component
Ψ(λ, z) = λ

1
2Y1(λ, z) in (2.6),

Ψλλ(λ, z) =
2

2λ− ω
Ψλ(λ, z) + V (λ, z)Ψ(λ, z), (2.8a)

Ψz(λ, z) =
2λ

2λ− ω
Ψλ(λ, z)− λ(ω + 2z) + 1 + 2(θ0 − v)

2λ− ω
Ψ(λ, z), (2.8b)

V (λ, z) = λ2 + 2zλ+ z2 − 2θ∞ + 1 +R(λ, z)λ−1 +
(
θ2

0 − 1
4

)
λ−2,

which we refer to as the scalar Garnier–Jimbo–Miwa (GJM) Lax pair, where

R(λ, z) =
(
θ0 + θ∞ − v − 1

2

)
ω + 2z(θ0 − v)− 2(2θ0 − v)v

ω
− ω2 + 2zω − 4v + 4θ0 + 2

2(2λ− ω)
.

Besides λ = 0 regular singular and λ = ∞ an irregular singular point, equation (2.8a) has
a further apparent singularity at λ = 1

2ω, with indices {0, 2}. So solutions of (2.8a) can branch
only at λ = 0 and λ =∞, and hence live on the universal covering space of C∗, which we denote
by C∞.

Lemma 2.5. Any local solution Ψ(λ, z) of (2.8), extends uniquely to a global single-valued
meromorphic function on C∞ ×C, singular in z only where ω(z) has a pole with +1 residue, in
which case Ψ(λ, z) has a simple pole in z. The behaviour of Ψ(λ, z) near zeros and poles of ω(z)
is characterised as follows:



Poles of Painlevé IV Rationals and their Distribution 11

• If ω(z) has a zero with negative sign at z = a, say corresponding expansion takes the

form (1.5) with ε = −1, then Ψ(λ, z) is holomorphic at z = a and ψ(λ) := λ−
1
2 Ψ(λ, a)

defines a solution of the anharmonic oscillator

ψ′′(λ) =
(
λ2 + 2aλ+ a2 + 1− 2θ∞ + 1

2bλ
−1 + θ0(θ0 + 1)λ−2

)
ψ(λ).

• If ω(z) has a zero with positive sign at z = a, say corresponding expansion takes the

form (1.5) with ε = 1, then Ψ(λ, z) is holomorphic at z = a and ψ(λ) := λ−
1
2 Ψ(λ, a)

defines a solution of the anharmonic oscillator

ψ′′(λ) =
(
λ2 + 2aλ+ a2 + 1− 2θ∞ + 1

2bλ
−1 + θ0(θ0 − 1)λ−2

)
ψ(λ).

• If ω(z) has a pole with residue −1 at z = a, say corresponding expansion takes the
form (1.5) with ε = −1, then Ψ(λ, z) is holomorphic at z = a and ψ(λ) := Ψ(λ, a)
defines a solution of the anharmonic oscillator (2.1), namely

ψ′′(λ) = V (λ; a, b, θ)ψ(λ),

V (λ; a, b, θ) = λ2 + 2aλ+ a2 + 2(1− θ∞)−
[
b+

(
2θ∞ − 1

2

)
a
]
λ−1 +

(
θ2

0 − 1
4

)
λ−2,

• If ω(z) has a pole with residue +1 at z = a, say corresponding expansion takes the
form (1.5) with ε = +1, then Ψ(λ, z) has a simple pole at z = a, and corresponding
residue ψ(λ) := lim

z→a
(z − a)Ψ(λ, z) defines a solution of the anharmonic oscillator

ψ′′(λ) =
(
λ2 + 2aλ+ a2 − 2θ∞ −

[
b+

(
2θ∞ − 3

2

)
a
]
λ−1 +

(
θ2

0 − 1
4

)
λ−2

)
ψ(λ).

Proof. Note that, without assuming the Painlevé property of PIV, the statement of the lemma
is rather nontrivial, as it in particular implies the Painlevé property for PIV, see for instance
Fokas et al. [22].

However, we know that, around any point z = a in the finite complex plane, ω(z) has
a convergent Laurent expansion, taking any of the forms (1.3)–(1.5), which greatly simplifies
the proof. The unique global single-valued meromorphic continuation of local solutions is proved
by showing:

1) near any point (λ, z) = (λ0, a) ∈ C∞ × C, there exists a meromorphic local fundamental
solution2 of (2.8);

2) any two local fundamental solutions Y (λ, z) and Ỹ (λ, z) of (2.8), with non-empty inter-
section of domains, are related by a constant invertible matrix C as in (2.17), on this
intersection.

To prove the first statement, we have to distinguishing between the different possibilities
(1.3)–(1.5), and whether λ0 = 1

2ω(a) or not. We give a detailed account of the case where
z = a is a pole with residue −1 of ω(z). The other cases are proven analogously.

So suppose z = a is a pole with residue −1 of ω(z), and let b ∈ C be defined by (1.5) with
ε = −1. Firstly, we choose small open discs λ0 ∈ Λ ⊆ C∞ and a ∈ Z ⊆ C such that ω(z) has no
zeros or poles on Z \ {a} and 2λ− w(z) does not vanish on Λ× (Z \ {a}).

Writing U1 = Ψ and U2 = Ψλ, equations (2.8) can be rewritten as

Uλ = A(λ, z)U , (2.9a)

2In this context, a local fundamental solution is defined as a row vector of two linearly independent solutions
on a simply connected domain.
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Uz = B(λ, z)U , (2.9b)

where

A =

(
0 1
V 2

2λ−w

)
, B =

(
b 2λ

2λ−w
bλ + 2λ

2λ−wV b+ 2
2λ−w

)
,

b := −λ(ω + 2z) + 1 + 2(θ0 − v)

2λ− ω
.

Furthermore, note that, as ω solves PIV, the compatibility condition

Az −Bλ +AB −BA = 0, (2.10)

is satisfied. Direct calculation gives

V (λ, z) = V (λ; a, b, θ) +O(z − a), z → a, (2.11)

locally uniformly in λ ∈ Λ, where V (λ; a, b, θ) is the potential defined in (2.1). Using this fact,
it easily follows that A(λ, z) is analytic on Λ× Z.

We will show the existence of a unique fundamental solution U(λ, z) of equations (2.9),
analytic on Λ× Z, with U(λ0, a) = I. To this end, firstly note that the Cauchy problem

Uλ = A(λ, z)U, λ ∈ Λ,

U(λ0) = I,

has a unique analytic solution U = U(λ, z), for every z ∈ Z, and in fact U(λ, z) is analytic on
Λ× Z, as A(λ, z) is analytic on Λ× Z. Furthermore it is easy to see that

|U(λ, z)| = 2λ− w
2λ0 − w

. (2.12)

We now search for a solution of (2.9), of the form

U(λ, z) = U(λ, z)F (z), (2.13)

where F (z) analytic on Z with F (a) = I, independent of λ. Note that U(λ, z) trivially satis-
fies (2.9a), and (2.9b) reduces to

Fz = C(λ, z)F, z ∈ Z,
F (a) = I, (2.14)

where C := U−1BU − U−1Uz. From equation (2.12), it easily follows that C(λ, z) is analytic
on Λ×Z. Hence, to show that the Cauchy problem (2.14) has a unique solution F , independent
of λ, it remains to show that Cλ = 0. By direct calculation, using(

U−1
)
λ

= −U−1UλU
−1, Uzλ = AzU +AUz,

we obtain

Cλ = U−1(−AB +Bλ +BA−Az)U = 0,

where the latter equality is precisely equation (2.10).
We conclude that the Cauchy problem (2.9b) has a unique fundamental solution F (z), ana-

lytic on Z, which is independent of λ. Equation (2.13) now defines a unique fundamental
solution U(λ, z) of (2.9), analytic on Λ× Z, with U(λ0, a) = I. Set

Y ∗(λ, z) = (Ψ∗1(λ, z),Ψ∗2(λ, z)) := (U11(λ, z),U12(λ, z)), (2.15)
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then Y ∗(λ, z) defines a fundamental solution of (2.8), on the open environment Λ×Z of (λ0, a).
Furthermore, note that, by equation (2.11),

A(λ, a) =

(
0 1

V (λ; a, b, θ) 0

)
,

with the potential V (λ; a, b, θ) as defined in (2.1). In particular Y ∗(λ, a) denotes a local funda-
mental solution on Λ of the anharmonic oscillator (2.1).

Considering part (2), if Y (λ, z) and Ỹ (λ, z) are local fundamental solutions, with non-empty
intersection of domains, then there exists a unique meromorphic matrix C = C(λ, z) specified
by equation (2.17) on this intersection. By equations (2.8a) and (2.8b), we have respectively
Cλ = 0 and Cz = 0, hence C ∈ GL2(C) is constant on this intersection.

We conclude that any local solution Ψ(λ, z) of (2.8), extends uniquely to a global single-
valued meromorphic function on C∞ × C. Suppose now that ω(z) has a pole with residue −1
at z = a, say corresponding expansion takes the form (1.5) with ε = −1, and let Y ∗ = (Ψ∗1,Ψ

∗
2)

denote a local analytic fundamental solution of (2.8), as constructed in (2.15), around (λ0, a),
for any λ0 ∈ C∞. Then there must exist constants c1, c2 ∈ C such that Ψ = c1Ψ∗1 + c2Ψ∗2, in
particular Ψ(λ, z) is indeed analytic at (λ, z) = (λ0, a) and ψ(λ) = Ψ(λ, a) defines a solution of
the anharmonic oscillator (2.1). The behaviour of solutions of (2.8) near zeros and poles with +1
residue of ω(z), is proven similarly. �

Lemma 2.6. Given solutions Ψ(λ, z) and Ψ̃(λ, z) of (2.8), suppose there exists z∗ ∈ C, not
a pole with residue +1 of ω(z), and c ∈ C such that

Ψ(λ, z) = cΨ̃(λ, z), λ ∈ C∞, (2.16)

holds at z = z∗, then (2.16) holds globally in z.
Furthermore, suppose Y (λ, z) and Ỹ (λ, z) are fundamental solutions of (2.8), then there

exists a constant matrix C ∈ GL2(C) such that

Ỹ (λ, z) = Y (λ, z)C. (2.17)

Proof. Using the deformation equation (2.8b), one inductively shows that

∂nΨ

∂zn
(λ, z∗) = c

∂nΨ̃

∂zn
(λ, z∗), for all n ∈ N.

Hence (2.16) holds locally in z around z = z∗, and hence globally by Lemma 2.5. The second
part follows from item (2) in the proof of Lemma 2.5. �

We write Ψ ≡ Φ, for solutions of (2.8), iff they are linearly dependent. Ablowitz et al. [24]
show that, for k ∈ Z4, there exists a unique subdominant solution of (2.8) in Ωk, normalised by
means of the asymptotic characterisation

Ψk(λ, z) =


(
1 +O

(
λ−1

))
eg(λ,z)

(
1
λ

)θ∞−1
2 if k odd,(

−1
2u+O

(
λ−1

))
e−g(λ,z)

(
1
λ

)1
2−θ∞ if k even,

(2.18)

as λ → ∞ in Ωk, locally uniformly in z away from zeros and poles of ω(z). The Stokes phe-
nomenon near λ =∞ in (2.8) now translates to the exponentially small jumps

Ψk+1(λ, z) = Ψk−1(λ, z) + skΨk(λ, z), k = 1, 2, (2.19a)

Ψ0(λ, z) = −e−2πiθ∞
(
Ψ2(e2πiλ, z) + s3Ψ3

(
e2πiλ

)
, z
)
, (2.19b)
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Ψ1(λ, z) = −e2πiθ∞Ψ3

(
e2πiλ, z

)
+ s0Ψ0(λ, z). (2.19c)

for a unique sk = sk(z) ∈ C, called the kth Stokes multiplier. From Lemma 2.6, we immediately
obtain that the Stokes multipliers sk = sk(z) are constant with respect to z.

Considering (2.8) near λ = 0, we restrict our discussion to θ0 /∈ −1
2N. Kapaev [30, 31] shows

the existence of solutions Ψ0
1(λ, z) and Ψ0

2(λ, z) of (2.8) with Frobenius expansions in λ, at λ = 0,

Ψ+(λ, z) = κλ
1
2 +θ0(1 + λF1(λ; z)), (2.20a)

Ψ−(λ, z) = κ−1λ
1
2−θ0

(
uω

4θ0
+ λF2(λ; z)

)
+ j log(λ)Ψ+(λ, z), (2.20b)

where κ = κ(z) satisfies

κz
κ

= −2
v

ω
, (2.21)

and F1(λ; z) and F2(λ; z) entire in λ, with j = 0 in the non-resonant case θ0 /∈ 1
2Z.

In the resonant case θ0 ∈ 1
2N
∗, we have

−e−2πiθ0Ψ−
(
e2πiλ, z

)
= Ψ−(λ, z) + j2πiΨ+(λ, z),

hence j = j(z) is independent of z, by Lemma 2.6. We call λ = 0 an apparent singularity if
j = 0. The main objective of this section, is to prove the following two propositions.

Proposition 2.7. Fix m,n ∈ N∗, then the three families of Hermite rationals are characterised
via the scalar GJM Lax pair (2.8), as follows.

H.I: Considering parameter values θ0 = 1
2n and θ∞ = m + 1 + 1

2n, a solution ω ∈ Wθ, re-

call definition (1.2), equals the rational solution ω
(I)
m,n, if and only if the scalar GJM Lax

pair (2.8) has an apparent singularity at λ = 0, and the subdominant solution at λ = ∞
in Ω0, is also subdominant at λ = 0, i.e., Ψ0(λ, z) ≡ Ψ+(λ, z).

Furthermore, in such case, it turns out that Ψ0(λ, z) ≡ Ψ2(λ, z) and

Ψ0(λ, z) = λ
1
2

(n+1)e−g(λ,z)P1(λ, z), (2.22)

where P1(λ, z) is a polynomial in λ of degree m, with constant term P1(0, z) = cκ(z), for
some c ∈ C∗, and g(λ, z) is as defined in (2.2).

H.II: Considering parameter values θ0 = 1
2m and θ∞ = 1 − 1

2m − n, a solution ω ∈ Wθ equals

the rational solution ω
(II)
m,n−1, if and only if the scalar GJM Lax pair (2.8) has an apparent

singularity at λ = 0, and the subdominant solution at λ = ∞ in Ω1, is also subdominant
at λ = 0, i.e., Ψ1(λ, z) ≡ Ψ+(λ, z).

Furthermore, in such case, it turns out that Ψ1(λ, z) ≡ Ψ3(λ, z) and

Ψ1(λ, z) = λ
1
2

(m+1)eg(λ,z)P2(λ, z),

where P2(λ, z) is a polynomial in λ of degree n − 1 with constant term P2(0, z) = cκ(z),
for some c ∈ C∗, and g(λ, z) is as defined in (2.2).

H.III: Considering parameter values θ0 = 1
2(m+ n) and θ∞ = 1

2(n−m+ 2), a solution ω ∈ Wθ

equals the rational solution ω
(III)
m−1,n, if and only if subdominant solutions near λ = ∞,

of the scalar GJM Lax pair (2.8), in opposite Stokes sectors are linearly dependent, i.e.,
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Ψ0(λ, z) ≡ Ψ2(λ, z) and Ψ1(λ, z) ≡ ψ3(λ, z). Furthermore, in such case, it turns out that
λ = 0 is an apparent singularity and

Ψ0(λ) = λ−
m+n−1

2 e−g(λ,a)P3(λ, z), Ψ1(λ) = λ−
m+n−1

2 eg(λ,a)Q3(λ, z),

where P3(λ, z) and Q3(λ, z) are polynomials in λ of degree n and m − 1 respectively,
with constant terms P3(0, z) = c1uωκ

−1 and Q3(0, z) = c2uωκ
−1, for some c1, c2 ∈ C∗,

and g(λ, z) is as defined in (2.2).

Remark 2.8. Each of the polynomials P1(λ, z), P2(λ, z), P3(λ, z) and Q3(λ, z) in Proposi-
tion 2.7, has only nonzero simple roots in the complex λ-plane.

Proposition 2.9. Fix m,n ∈ Z, let θ0 = 1
2n −

1
6 and θ∞ = 1

2(2m + n + 1), then a solution
ω ∈ Wθ equals the rational solution w̃m,n(z), if and only if the Stokes data of the scalar GJM
Lax pair (2.8) satisfy

s0 = s2, s1 = s3, s0s1 + 1 = 0.

In order to prove Propositions 2.7 and 2.9, we first discuss the monodromy space and mon-
odromy mapping induced by the scalar GJM Lax pair. There are different cases to be taken
care of, the non-resonant and resonant, both of which are necessary to study rational solutions.
We then discuss the monodromy corresponding to the rational solutions. The Okamoto and
Hermite I and II families of rational solutions, can be found in the literature [31], see also [42].
However, the Hermite III case seems to be missing in the literature; hence we study it in Propo-
sition 2.14 below. Finally we use these data to prove aforementioned propositions. For sake of
later convenience, we introduce the following matrices

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
.

2.1.1 Monodromy of linear problem

We discuss the monodromy data of the scalar GJM Lax pair, following Ablowitz et al. [24] and
Kapaev [30, 31] closely. Let us define fundamental solutions of the scalar GJM Lax pair (2.8)
near λ =∞,

Y0(λ, z) =
(
−e2πiθ∞Ψ3(e2πiλ, z) Ψ0(λ, z)

)
, Y2(λ, z) =

(
Ψ1(λ, z) Ψ2(λ, z)

)
,

Y1(λ, z) =
(
Ψ1(λ, z) Ψ0(λ, z)

)
, Y3(λ, z) =

(
Ψ3(λ, z) Ψ2(λ, z)

)
,

and a fundamental solution near λ = 0,

Y 0(λ, z) =
(
Ψ+(λ, z) Ψ−(λ, z)

)
.

By Lemma 2.6, there exist constant matrices S0, S1, S2, S3, E ∈ GL2(C) such that

Yk+1(λ, z) = Yk(λ, z)Sk, k = 0, 1, 2,

Y0(λ, z) = −Y3

(
e2πiλ, z

)
S3e

2πiθ∞σ3 ,

Y0(λ, z) = Y 0(λ, z)E. (2.23)

Given any solutions Ψ and Φ of the scalar GJM Lax pair (2.8), it follows by direct calculation
that there exists a c ∈ C such that their Wronskian equals

Ψ(λ, z)Φλ(λ, z)−Ψλ(λ, z)Φ(λ, z) = cu(z)
(
λ− 1

2ω(z)
)
.



16 D. Masoero and P. Roffelsen

It is easily seen that Y0(λ, z) and Y 0(λ, z) have identical Wronskian, given by c = 1 in the above
formula. Therefore, by (2.23), the connection matrix E has unit determinant. For k ∈ Z4, we
call Sk the k-th Stokes matrix, which, by (2.19), equals

Sk =

(
1 0
sk 1

)
if k is even, Sk =

(
1 sk
0 1

)
if k is odd. (2.24)

Writing Y 0(e2πiλ, z) = Y 0(λ, z)M0, we have the semi-cyclic relation

−S0S1S2S3e
2πiθ∞σ3 = E−1M−1

0 E, (2.25)

which, by taking traces, implies

(1 + s1s2)e2πiθ∞ + (s0s3 + (1 + s2s3)(1 + s0s1))e−2πiθ∞ = 2 cos 2πθ0, (2.26)

as M0 is given explicitly by

M0 = −e2πiθ0σ3 if θ0 /∈ 1
2Z, M0 = (−1)n+1 (I + 2jπiσ+) if θ0 = 1

2n ∈
1
2N
∗. (2.27)

Now the Stokes data s = (s0, s1, s2, s3) and connection matrix E depend on the choice of solution
ω ∈ Wθ, and auxiliary functions u and κ, characterised by (2.7) and (2.21) respectively. Different
choices ũ = αu and κ̃ = βκ, with α, β ∈ C∗, lead to a change of monodromy data given by

s̃ =
(
α−1s0, αs1, α

−1s2, αs3

)
, (2.28)

Ẽ =

(
β−1E11 αβ−1E12

α−1βE21 βE22

)
. (2.29)

Let M s
θ denote space obtained by cutting

{
s ∈ C4

}
with respect to (2.26).

Definition. In the non-resonant case θ0 /∈ 1
2Z, the monodromy spaceMθ is defined as the quo-

tient of M s
θ with respect to the action given in (2.28). We denote the corresponding monodromy

mapping by

Tθ : Wθ →Mθ,

which sends a solution of PIV(θ) to corresponding orbit of Stokes data of (2.8).

Proposition 2.10. Let θ0 /∈ 1
2Z, then the monodromy mapping Tθ is injective.

Proof. See Ablowitz et al. [24]. �

In the resonant case θ0 ∈ 1
2N
∗, the dominant solution Ψ−(λ, z) at λ = 0, is no longer

uniquely specified by the asymptotic expansion in (2.20b) as one can add arbitrary multiples of
the subdominant solution Ψ+(λ, z) to it. This amounts to arbitrary right multiplication of the
fundamental solution at λ = 0,

Ỹ 0 = Y 0(I − rσ+), r ∈ C,

which correspondingly transforms E as Ẽ = (I + rσ+)E. Invariant under this transformation,
and the action induced by changing κ in (2.29), is the quantity

iE := E22/E21 ∈ P1. (2.30)
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Lemma 2.11. Let θ0 ∈ 1
2N
∗, then λ = 0 is an apparent singularity of (2.6a), i.e., j = 0, if

and only if the stokes multipliers s are elements of the one-dimensional submanifold M0
θ of M s

θ ,
defined by

s0 = −s2e
2πi(θ∞+θ0), s1 = −s3e

−2πi(θ∞+θ0), 1 + s1s2 = e−2πi(θ∞+θ0). (2.31)

Furthermore, in case j 6= 0, then the quantity iE is given explicitly by

iE = e−2πiθ∞ s1 + s3 + s1s2s3

e2πiθ∞(1 + s1s2)− e2πiθ0
,

where we note that numerator and denominator of the right-hand side vanish simultaneously if
and only if (2.31) holds, for s ∈M s

θ .

Proof. This follows directly from equations (2.25) and (2.27), see also Kapaev [31]. �

Note that the action in (2.29) gives

ĩE = αiE , (2.32)

and we define

Mθ =
(
M s
θ \M0

θ

)
t
(
M0
θ ×

{
iE ∈ P1

})
.

Definition. In the resonant case θ0 ∈ 1
2N
∗, the monodromy spaceMθ is defined as the quotient

of Mθ with respect to the action given in (2.28) and (2.32). We denote corresponding monodromy
mapping by

Tθ : Wθ →Mθ,

which sends a solution of PIV(θ) to corresponding orbit of monodromy data of (2.8).

Proposition 2.12. Let θ0 ∈ 1
2N
∗, then the monodromy mapping Tθ is injective.

Proof. See Kapaev [31]. �

Finally, the monodromy data, are not only invariant under the PIV flow, but also under the
action of the Bäcklund transformations R1–R4, defined in Appendix B.

Proposition 2.13. For 1 ≤ i ≤ 4 and θ ∈ C2 with θ0, θ
(i)
0 /∈ −1

2N, monodromy data correspon-
ding to solutions are invariant under the Bäcklund transformation Ri, i.e.,

Tθ(i) ◦ Ri = Tθ.

Proof. See Fokas et al. [24]. �

2.1.2 Monodromy corresponding to rational solutions

Proposition 2.14. The monodromy data corresponding to the Hermite I family (1.8a), are
given by

s0 = −s2 6= 0, s1 = s3 = 0, iE = 0. (2.33)

The monodromy data corresponding to the Hermite II family (1.8b), are given by

s1 = −s3 6= 0, s0 = s2 = 0, iE =∞.

The monodromy data corresponding to the Hermite III family (1.8c), are given by

s0 = s1 = s2 = s3 = 0, iE ∈ P1 \ {0,∞}.

The Stokes data corresponding to the Okamoto family (1.10), are given by

s0 = s2 s1 = s3, s0s1 + 1 = 0.
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Proof. As to the Okamoto family, see Kapaev [31] and Milne et al. [42]. In the former paper,
Kapaev also handles the Hermite I and II cases. Let us consider the Hermite III case. Because
the monodromy data are invariant under Bäcklund transformations R1–R4, by Proposition 2.13,
we only consider the simple case (1.9c). Then, for any α ∈ C∗, a solution of (2.7) is given by
u(z) = α. Now, considering the scalar GJM Lax pair (2.8), it follows by direct calculation that
a fundamental solution is given by

Y∗(λ, z) =
(
eg(λ,z) −1

2αe
−g(λ,z)) .

Then, comparison with the asymptotic characterisations (2.18), gives

Y0(λ, z) = Y1(λ, z) = Y2(λ, z) = Y3(λ, z) = Y∗(λ, z),

which implies that all Stokes multipliers vanish and λ = 0 is an apparent singularity. Now, for
any β ∈ C∗, a solution of (2.21) is given by κ(z) = βz. It is straightforward to check that

Ψ+(λ, z) = Y∗(λ, z) ·
(

1
2β
α−1β

)
,

hence iE = −1
2α ∈ P1 \ {0,∞}. �

Proof of Proposition 2.7. Let us consider the Hermite I case H.I. Because of the injectivity
of the monodromy mapping 2.12, to establish the first part, all we have to show is that the
monodromy data corresponding to Hermite I (2.33), are equivalent to (2.8) having an apparent
singularity at λ = 0, and Ψ0(λ, z) ≡ Ψ+(λ, z). Now suppose that the monodromy data of (2.8)
are given by (2.33), then Lemma 2.11 shows that λ = 0 is indeed an apparent singularity. The
fact that iE = 0 readily translates to Ψ0(λ, z) ≡ Ψ+(λ, z).

Conversely, suppose λ = 0 is an apparent singularity and Ψ0(λ, z) ≡ Ψ+(λ, z), then the latter
immediately gives iE = 0. Furthermore Lemma 2.11 shows

s0 = −s2, s1 = −s3, s1s2 = 0,

Hence s1 = 0 or s2 = 0. Suppose, for the sake of contradiction, that s2 = 0. Then Ψ1(λ, z) =
Ψ3(λ, z) and hence

Ψ1(λ, z) ∼ eg(λ,z)λ−m−
1
2

(n+1),

as λ→∞ in C. It is now easily seen that

f(λ, z) = e−g(λ,z)λ
1
2

(n−1)ψ1(λ)

is an entire function satisfying f(λ, z) ∼ λ−m−1 as λ→∞ in C. Such a function does not exist,
hence s2 6= 0 and we are left with s1 = s3 = 0.

Considering the second part of the Hermite I case H.I, as s1 = 0, we indeed have Ψ0(λ, z) ≡
Ψ2(λ, z). Let us define P1(λ, z) by equation (2.22). Then it is easily seen that P1(λ, z) is
entire satisfying P1(λ, z) ∼ −1

2u(z)λm, as λ → ∞ in C, from which it follows that P1(λ, z) is
a polynomial in λ of degree m. The expression for the constant term of P1(λ, z) stems from
the asymptotic characterisation of Ψ+(λ, z). The cases H.II and H.III follow by a similar line of
argument. �
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2.2 Localisation of Lax pair at poles

Recall that the scalar GJM Lax pair (2.8) has a regular singular point at λ = 0, an irregular
singular point at λ = ∞ and a further apparent singularity at λ = 1

2ω. Now, considering
Lemma 2.5, a pole of ω with −1 residue is a point where the further apparent singularity merges
with the irregular singular point, resulting in an integer jump of one of the exponents of the
irregular singular point, as can be seen by comparison of the asymptotic expansions (2.18)
and (2.3), in the k is odd case. In this section, we wish to show that the monodromy of the
scalar GJM Lax pair is preserved in such a limit.

2.2.1 Monodromy of anharmonic oscillator

Let us reconsider the anharmonic oscillator (2.1), for some fixed a, b ∈ C. For k ∈ Z4, we defined
unique solutions ψk(λ), subdominant in Ωk, by (2.3). Let us also recall the Stokes phenomenon
of the anharmonic oscillator near λ = ∞, made explicit by equations (2.4) and (2.5), with
corresponding Stokes data s ∈ C4.

Similar to equations (2.20), there exist, for θ0 /∈ −1
2N, solutions of (2.1) enjoying Frobenius

expansions near λ = 0 of the form

ψ+(λ) = λ
1
2 +θ0(1 + λf1(λ)), ψ−(λ) = λ

1
2−θ0

(
− 1

2θ0
+ λf2(λ)

)
+ j log(λ)ψ0

1(λ),

where f1(λ) and f2(λ) entire and j = 0 in the non-resonant case θ0 /∈ 1
2N
∗. There exists a unique

matrix E ∈ GL2(C), which we call the connection matrix, such that(
−e2πiθ∞ψ3(e2πiλ) ψ0(λ)

)
=
(
ψ+(λ) ψ−(λ)

)
· E.

As both fundamental solutions appearing in the above equation have unit Wronskian, the con-
nection matrix has unit determinant.

Let us define Sk by (2.24), define M0 by (2.27), then equations (2.25) and hence (2.26) hold,
so s ∈ M s

θ . Furthermore Lemma 2.11 also holds true in this case. We define iE ∈ P1 by (2.30)
if θ0 ∈ 1

2N
∗. Finally we define the monodromy mapping for the anharmonic oscillator (2.1),

T oθ : C2 →Mθ, (a, b) 7→ T oθ (a, b),

where T oθ (a, b) is the orbit corresponding to the monodromy data {s, E} of (2.1) within Mθ.

2.2.2 Localisation and Monodromy

We now wish to compare the monodromy data of the GJM scalar equation (2.8) and correspond-
ing anharmonic oscillator (2.1), upon localisation.

Lemma 2.15. Let ω(z) be a solution of PIV and fix some u(z) and κ(z) satisfying (2.7)
and (2.21) respectively. Say z = a is a pole of ω(z) with residue −1 and corresponding co-
efficient b as in (1.5) with ε = −1, and let u0, κ0 6= 0 be defined by

u(z) = u0(z − a) +O
(
(z − a)2

)
, κ(z) = κ0 +O(z − a), z → a. (2.34)

Then, for k ∈ Z, we have

Ψk(λ, a) =

{
ψk(λ) if k is odd,
1
2u0ψk(λ) if k is even.

(2.35)

Furthermore

Ψ+(λ, a) = κ0ψ+(λ), Ψ−(λ, a) = 1
2u0κ

−1
0 ψ−(λ) + cψ+(λ), (2.36)

for some c ∈ C, with c = 0 in the non-resonant case θ0 /∈ 1
2Z.
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Proof. As was proven in Lemma 2.5, in the limit z → a, any solution Ψ(λ, z) of (2.8) converges
to a solution ψ(λ) of (2.1), since the potential V (λ, z) of the former converges to the potential
V (λ; a, b, θ) of the latter, see equation (2.11).

We first consider the convergence of Frobenius solutions near λ = 0, as z → a, see (2.36). It
follows from Lemma 2.5, that the terms F1(λ; z) and F2(λ; z) in equations (2.20), are analytic
in z away from poles with +1 residue of ω(z). In particular, at z = a equations (2.20) reduce to

Ψ+(λ, a) = κ0λ
1
2 +θ0(1 + λF1(λ; a)),

Ψ−(λ, a) = κ−1
0 λ

1
2−θ0

(
− u0

4θ0
+ λF2(λ; a)

)
+ j log(λ)Ψ+(λ, a),

from which equations (2.36) trivially follow.
Establishing the convergence in (2.35) is more involved because the singularity at λ = ∞ is

irregular. Following [36, Theorem 4.5], where the same limit is established in the Painlevé I case,
one defines Ψk(λ, z) by means of a linear integral equation of Volterra type, where the kernel

K(λ, µ; z) is expressed in term of the action integral e
∫ λ
µ

√
V (ν,z)dν , see [36, equation (4.17)].

From the convergence of the kernel in the limit lim
z→a

K(λ, µ; z) = K(λ, µ; a), trivial but tedious

estimates lead to the proof of the convergence of the solutions Ψk(λ, z). �

We define the Laurent mapping

L±θ : C2 7→ Wθ, (a, b) 7→ L±θ (a, b), (2.37)

where L±θ (a, b) denotes the meromorphic continuation of (1.5) with ε = ±1.

Proposition 2.16. For any parameter values θ ∈ C∗ × C,

Tθ ◦ L−θ = T oθ ,

where Tθ is the monodromy mapping of the scalar GJM Lax pair, T oθ is the monodromy mapping
of the anharmonic oscillator and L−θ is the Laurent mapping (2.37).

Proof. Take any (a, b) ∈ C2, then ω := L−θ (a, b) is a solution of PIV(θ) with Laurent expan-
sion (1.5) about z = a with ε = −1. Let us take some u(z) and κ(z) satisfying (2.7) and (2.21)
respectively, which we may assume are normalised such that u0 = κ0 = 1 in (2.34). Then, using
Lemma 2.15, it is easy to see that the the Stokes multipliers, and quantity iE in the resonant
case, are conserved as z → a. �

2.3 Exact characterisation of poles

Theorem 2.17. Fix θ ∈ C∗×C and a solution ω of PIV(θ), then z = a is a pole with residue −1
of ω, if and only if there exists b ∈ C such that the monodromy of the anharmonic oscillator (2.1),
coincides with the monodromy of the scalar GJM Lax pair corresponding to the solution ω, i.e.,
T oθ (a, b) = Tθ(ω). In such case b turns out to be the coefficient in (1.5).

Proof. We have already established the “only if” part. As to its converse, suppose b ∈ C is
such that T oθ (a, b) = Tθ(ω). Let ω̃ be the solution of PIV(θ) defined by ω̃ = L−θ (a, b). Then
we know, by Proposition 2.16, that Tθ(ω̃) = T oθ (a, b) = Tθ(ω). Hence we have ω = ω̃, by the
injectivity of the monodromy mapping, see Propositions 2.10 and 2.12. In particular z = a is
indeed a pole with residue −1 of ω, and b is the coefficient in (1.5). �

Note that Theorem 2.3 is a direct consequence of Proposition 2.14 and Theorem 2.17. How-
ever, Theorem 2.2 still requires some work.
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Proof of Theorem 2.2 and Remark 2.8. We fix m,n ∈ N∗ and let us consider the equiva-
lence with H.1. We set θ0 = 1

2n and θ∞ = m+1+ 1
2n. From Proposition 2.14 and Theorem 2.17,

we conclude that, z = a is a zero of Hm,n(z), if and only if, there exists b ∈ C such that the
monodromy of the anharmonic oscillator (2.1) is given by (2.33). The latter statement is easily
seen to be equivalent to H.1, by an argument identical to the proof of the first part of H.I in
Proposition 2.7. Furthermore, in case z = a is indeed a zero of Hm,n(z), then comparison of H.1
and H.I, gives P1(λ, a) = 1

2u0p1(λ), by Lemma 2.15. The roots of p1(λ) are necessarily simple.
Now P1(λ, z) might a priori have a double root at λ = 1

2ω(z), for special values of z. However,
by Lemma 2.6, this would imply that P1(λ, z) has a double root at λ = 1

2ω(z), for all values of z,
not equal to a zero or pole of ω(z). Indeed, the latter follows from the fact that there exists an
up to scalar multiplication unique solution of (2.8), which has a double root at λ = 1

2ω(z), for
all values of z, not equal to a zero or pole of ω(z).

Because of the identity P1(λ, a) = 1
2u0p1(λ), this would in turn imply that p1(λ) is of degree

at most m − 2, in contradiction with the fact that p1(λ) is necessarily of degree m − 1. We
conclude that P1(λ, z), does not has a double root at λ = 1

2ω(z), for all values of z, not a zero
or pole of ω(z). In particular, for any such z, all the roots of P1(λ, z) are simple and nonzero.

The equivalence with H.2 and H.3 is shown by the same line of argument. �

3 Nevanlinna functions and poles of rational solutions

We have showed that poles of rational solutions are in bijection with anharmonic oscillators
having particular prescribed monodromy. Here we show that these oscillators naturally define
Riemann surfaces which are infinitely-sheeted coverings of the Riemann sphere uniformised by
meromorphic functions.

More precisely we introduce two discrete classes of Riemann surfaces and we show that
they classify roots of the generalised Hermite polynomials. We then derive a slightly weaker
characterisation for roots of Okamoto polynomials.

Our approach is based on the seminal work by Nevanlinna [44] and Elfving [14], which has
lately been revived and found useful in modern applications, see, e.g., [18, 40].

The following Definition is instrumental to the analysis below.

Definition 3.1. Let K be a one dimensional complex manifold.

A holomorphic function f : K → P1 (that is a meromorphic function) is called a branched
covering of the sphere if there exists a finite subset S ⊂ P1 such that the restriction

f : K \ f−1(S)→ P1 \ S

is a topological covering.

The minimal set B among all the sets satisfying the above property is called the branching
locus of f .

We remark that in what follows we will always restrict to the case when K is either the
complex plane or the Riemann sphere.

3.1 Anharmonic oscillators and Nevanlinna theory

Before tackling our characterisation, we briefly sketch the theory of the Riemann surfaces as-
sociated with anharmonic oscillators and suggest [40] for a complete introduction. Consider an
anharmonic oscillator

ψ′′(λ) = r(λ)ψ(λ), (3.1)
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where r is some rational function, with at most double poles in the complex plane. Then, for
any two linearly independent solutions {ψ, φ} of (3.1), the function f = ψ/φ : C→ P1 is locally
invertible at any point λ, unless λ is a double pole of r.

Suppose λ∗ is a double pole and locally r(λ) = n2−1
4(λ−λ∗)2 +O( 1

λ−λ∗ ) for some n ∈ C. Then the

corresponding indices of (3.1) are 1±n
2 .

If n ∈ N and the Fuchsian singularity is apparent, then f is locally single valued, but in
this case λ∗ is a critical point of f of order n − 1. If, on the contrary, n ∈ N but the Fuchsian
singularity λ∗ is not apparent, or n /∈ N, then f is a multivalued function in the neighbourhood
of λ∗.

The point at infinity is in general an irregular singularity. Suppose r(λ) = λM + O
(
λM−1

)
as λ→∞, then equation (3.1) admits M + 2 Stokes sectors

ΩM
k =

{∣∣∣∣arg λ− 2πk

M + 2

∣∣∣∣ < π

2M + 2

}
, k = 0, . . . ,M + 1.

Each Stokes sector can be thought as a critical point of infinite order – technically a logarithmic
direct transcendental singularity [17]. Indeed, in each Stokes sector, the function f has a well-
defined asymptotic value

wk := lim
λ→∞, λ∈ΩMk

f(λ) ∈ P1,

while all its derivatives vanish exponentially fast; here the limit must be taken along curves
not tangential to the boundary of the Stokes sector. These asymptotic values can be directly
computed from the Stokes multipliers but we do not need the general relation here [39, 44].

Now, f is only unique up to composition by Möbius transforms. Indeed if {ψ∗, φ∗} is another
choice of linearly independent solutions of (3.1), then

f̃ = m ◦ f, m(z) =
az + b

cz + d
,

(
ψ∗

φ∗

)
=

(
a b
c d

)(
ψ
φ

)
. (3.2)

Summing up, to any anharmonic oscillator (3.1), such that all poles of the potential r in the
plane are apparent Fuchsian singularities, we can associate a branched covering of the sphere,
up to automorphism of the target sphere, namely up to Möbius equivalence. The branching
locus B is the union of the critical values and asymptotic values.

In turn, one can recover the potential r from f , by means of the Schwarzian derivative,

r = −1

2
S(f), S(f) :=

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

,

which indeed is invariant under composition by Möbius transformations (3.2).
Finally, we notice that two meromorphic functions f and f∗, of the kind described above, are

topologically equivalent coverings of the sphere if and only if there exist c 6= 0 and d such that
f∗(λ) = f(cλ+ d).

The question that remains is whether all branched coverings of the sphere as above can be
obtained by means of anharmonic oscillators. This was positively settled by Elfving, as the
following theorem shows.

Theorem 3.2 (Nevanlinna, Elfving). Let f be a function with p <∞ transcendental singulari-
ties and m <∞ critical points, lying over q ≥ 2 points. Then all transcendental singularities are
direct, logarithmic and r = −1

2S(f) is a rational function of degree less or equal to p−2+2m. In
particular, suppose the function f has no critical points, i.e., m = 0. Then r(z) is a polynomial
of degree p− 2.

Proof. For the case m = 0 see [44]. For the general case, see [14]. �
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3.1.1 Combinatorics of branched coverings

In order to present our results, we briefly introduce the concept of a line complex corresponding
to a branched covering of the sphere, and refer the reader to [14, 40, 44] for the precise definitions.
Let f be a branched covering of the sphere, with ordered branching locus {b1, . . . , bn}, and let
us fix an oriented Jordan curve γ, passing through all of the branching points, respecting the
particular ordering. This curve divides the sphere into an inner and outer polygon, with common
sides given by the arcs (b1, b2), . . . , (bn, b1), see Fig. 3.

We choose a point Pi in the inner polygon and a point Po in the outer polygon, as well as
for each 1 ≤ k ≤ n, an analytic line (i.e., curve) lk connecting Pi and Po, going only through
the side (bk, bk+1) and only once, with convention bn+1 = b1. The line complex is the graph,
given by the inverse image under f of the union of lines lk, where the set of vertices V is given
by the (disjoint) union of Vi := f−1(Pi) and Vo := f−1(Po). Note that the set of vertices V is
at most countable and the vertices do not accumulate in C. Furthermore the line complex is
bipartite with respect to the partition V = Vi t Vo. We colour the edges of the graph by means
of uniquely assigning the line corresponding to each edge via f , in particular adopting the cyclic
ordering of the lines. The edges belonging to Vi have positive circular order. The edges around
a vertex belonging to Vo have negative circular order. Notice that each line lk defines a map
Vi → Vo and thus the composition l−1

k ◦ lk−1 defines the monodromy representation σk of a loop
around bk on the set of internal vertices.

Pi Po

b1

b2

b3

γ

l1

l2

l3

Figure 3. The case when the branching locus has three points. A choice of the triangle and of the three

intersecting lines. The line complex is the inverse image of the above geometric configuration.

Critical points of f are encircled by a closed loop of the graph with more than one internal
(and external) vertex; the multiplicity of the critical point is the number of internal or external
vertices in the loop minus one. If bk is the corresponding critical value, then the monodromy
representation σk acts on the internal vertices of the loop by a simple shift.

Stokes sectors are bounded by an infinite sequence of internal and external vertices. If bk is
the corresponding critical value, then the monodromy representation σk acts transitively on the
internal vertices of the sequences of internal vertices by a simple shift.

Note that the line complex of f , up to orientation-preserving homeomorphism of the domain,
is far from unique, as it depends on the particular ordering of branch points and of the curve γ.
However, for fixed choice of the ordering and curve, to any line complex corresponds a unique
equivalence class of meromorphic functions. Moreover, as to be expected, the braid group acts
transitively on the possible line complexes of f [14, 33].
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3.2 Hermite oscillators and families of coverings

In this subsection we construct two distinguished families of branched coverings of the sphere
and show that they classify roots of generalised Hermite polynomials.

Definition. For m,n ∈ N∗, we call the anharmonic oscillator (2.1) (or its potential) with
θ0 = 1

2n and θ∞ = m+ 1 + 1
2n, a level (m,n) Hermite I oscillator, if it satisfies all the properties

in case H.1 of Theorem 2.2.

Definition. For m,n ∈ N∗, we call the anharmonic oscillator (2.1) (or its potential) with
θ0 = 1

2m and θ∞ = 1 − 1
2m − n, a level (m,n) Hermite II oscillator, if it satisfies all the

properties in case H.2 of Theorem 2.2.

Definition. For m,n ∈ N∗, we call the anharmonic oscillator (2.1) (or its potential) with
θ0 = 1

2(m+n) and θ∞ = 1
2(n−m+ 2), a level (m,n) Hermite III oscillator, if it satisfies all the

properties in case H.3 of Theorem 2.2.

We can compute the branching locus of the Hermite I, II and III oscillators by Theorem 2.2.
Let us consider the case I first. If f = ψ0

ψ1
then w0 = w2 = f(0) = 0 while w1 and w−1 are

nonzero and distinct. Similarly in case II, take f = ψ1

ψ0
then w1 = w3 = f(0) = 0 while w0 and w2

are nonzero and distinct. Case III is different. If f = ψ0

ψ1
then w0 = w2 = 0, w1 = w2 = ∞

and f(0) is different from zero and infinity. We thus define two families of functions F1 and F2:

1. A function f belongs to the family F1, if it has a unique critical point and four direct
singularities, with two asymptotic values coinciding with the critical value. Moreover f is
normalised such that

• S(f)(λ) = −2λ2 +O(λ) as λ→∞;

• The critical point is λ = 0;

• Let wk denote the asymptotic value of f in the sector Ω2
k, k = 0, 1, 2,−1. We have

w0 = w2 = f(0) = 0, w1 = i and w−1 = −i.

2. A function f belongs to the family F2, if it has a unique critical point and four direct
singularities, with the asymptotic values coinciding pairwise. Moreover f is normalised
such that

• S(f)(λ) = −2λ2 +O(λ) as λ→∞;

• The critical point is λ = 0;

• Let wk denote the asymptotic value of f in the sector Ω2
k, k = 0, 1, 2,−1. We have

w0 = w2 = 0, w1 = w−1 =∞ and f(0) = 1.

Notice that all functions in these families are Belyi functions [40] because the five singularities
lie over three distinct points.

In Fig. 4 (resp. 6), where we use the notation depicted in Fig. 5, we classify all line complexes
describing functions in the families F1 (resp. F2), according to the combinatorics of coverings
described above. Each line complex is completely determined by a set of arbitrary positive
integers n1, . . . , n4. In Fig. 4, the values of b1, b2, b3 are b1 = −i, b2 = 0 and b3 = i and the
curve γ is chosen to be the imaginary line. In Fig. 6, the values of b1, b2, b3 are b1 = 1, b2 = 0
and b3 =∞ and the curve γ is chosen to be the real axis.

By the general theory, Fig. 4 (resp. 6) classifies all functions in F1 (resp. F2). Indeed each of
the line complexes described determines a unique function in F1 (resp. F2), and vice versa for
every f ∈ F1 (resp. f ∈ F2) the line complex of f is one of those depicted in Fig. 4 (resp. 6).
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One can read from the line complex in Fig. 4 that the critical point and two transcendental
singularities lie over b2, while the points b1 and b3 are simple asymptotic values. Moreover, the
critical point has multiplicity n2 +n3−1, and the equation f(λ) = b2 has further n1 +n4 simple
solutions. For fixed n = n2 +n3 +1 and m = n1 +n4 +1, there are m×n distinct line complexes
and thus functions in F1.

l3l3 l3 l3
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Figure 4. Line complexes of Hermite I and II Nevanlinna functions.

As for the line complex in Fig. 6 a similar analysis can be performed. One can read that the
critical point lies over b1, two transcendental singularities lie over b2, and the other two over b3.
Moreover, the critical point has multiplicity n1 + n2 + n3 + n4 + 1, the equation f(λ) = b3 has
n1 + n3 simple solutions, and the equation f(λ) = b2 has n2 + n4 simple solutions.

lk
li

lj

lk
n

lk
li

lj

lk
=

li

lj

lk· · ·

n times

Figure 5. Shorthand notation used in depicting line complexes where n ∈ N and {i, j, k} = {1, 2, 3}.

We now prove that a function belongs to the family F1 if and only if f is the ratio of two
solutions of a Hermite I or Hermite II harmonic oscillator.

Theorem 3.3. The ratio of two particular solutions of a (m,n) Hermite I oscillator or to
a (m,n) Hermite II oscillator belongs to the family F1 with, in the case I, m = n1 + n4 + 1 and
n = n2 + n3 + 1, and in the case II, m = n2 + n3 + 1 and n = n1 + n4 + 1.

Conversely, if f belongs to the family F1 then f is the ratio of two solutions of a (n1 +n4 +1,
n2 + n3 + 1) Hermite I oscillator and to a (n2 + n3 + 1, n1 + n4 + 1) Hermite II oscillator. In
other words, −1

2S(f)(λ) is a level (n1 + n4 + 1, n2 + n3 + 1) Hermite I harmonic oscillator and
1
2S(f)(iλ) is a level (n2 + n3 + 1, n1 + n4 + 1) Hermite II oscillators.

Proof. The first part of the theorem follows by construction of the family F1. We now prove
the second part. Since f belongs to F1, it has a unique critical point of multiplicity n2 + n3.
Around the critical point λ = 0, −1

2S(f) = n2−1
4λ2

+ O( 1
λ) where n = n2 + n3. Moreover, f has

four transcendental singularities and therefore −1
2S(f)(λ) is of the form P2(λ) + c−1

λ + n2−1
4λ2

for
some c−1 ∈ C and some quadratic polynomial of the form P2(λ) = λ2 + c1λ+ c0.

Consider the equation ψ′′(λ) = −1
2S(f)(λ)ψ(λ). By the WKB asymptotic, see, e.g., Lem-

ma 4.5(iii) below, the logarithmic derivative of the subdominant solution ψ0 (resp. ψ2) is well
approximated – for |λ| � 0 in the union of the Stokes sectors Ω0, Ω1, Ω−1 (resp. Ω2, Ω1,

Ω−1) – by −V
1
2 (λ) up to an error O(λ−2), where the sign of the square root is chosen such that

V
1
2 = λ+O(1). Since w0 and w2 coincide, ψ0 and ψ2 are linearly dependent. Therefore we can
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extend the WKB asymptotic to the whole complex plane

ψ′0(λ)

ψ0(λ)
= −V (λ)

1
2 +O

(
λ−2

)
as |λ| → ∞. (3.3)

Consider the function f = ψ0

ψ1
. The asymptotic values w0 = w2 are clearly 0 and so is, by the

hypothesis, the critical value. Therefore, ψ0 has a zero of order n2+n3+1
2 at 0 (ψ0 is two-valued

if n2 + n3 is even) and further n1 + n4 simple zeros. We conclude that

lim
R→+∞

1

2πi

∮
|µ|=R

ψ′0(µ)

ψ0(µ)
=
n2 + n3 + 1

2
+ n1 + n4.

Because of the WKB estimates (3.3), the latter number coincides with the residue of
√
V at

infinity, which is equal to 1
8c

2
1 − 1

2c0. This means that V (λ) is precisely of the form (2.1) for
a level (m,n) Hermite I potential with m = n1 + n4 + 1, n = n2 + n3 + 1 and a = c1

2 . �

Corollary 3.4. Fix m,n ∈ N∗. Let F̂m,n = {f ∈ F1 s.t.m = n1 + n4 + 1 andn = n2 + n3 + 1}.
Denote S(f)1 : f → C the coefficient of the linear term of the Schwarzian derivative of f . The
mapping

Π: F̂m,n → C, f 7→ −1

4
S(f)1,

is a bijection between the set F̂m,n and the set of the roots of generalised Hermite polyno-
mial Hm,n(z).

Corollary 3.5. For all m,n ∈ N, Hm,n(z) is a polynomial of order m× n. Moreover, Hm,n(z)
has exactly m real roots when n is odd, and none when n is even.

Proof. About the order of Hm,n(z). By the previous corollary, the number of roots of Hm,n

coincides with the number of distinct Stokes complexes such that m = n1 + n4 + 1 and n =
n2 + n3 + 1; as it was already noted, this number equals m× n.

Concerning the number of real roots. By construction of the line complexes (Fig. 4), if

f ∈ F̂m,n, has indices {ni}, then its conjugate, defined as f(λ), belongs to F̂m,n with indi-
ces {n′i}, given by n′1 = n1, n′2 = n3, n′3 = n2 and n′4 = n4. In particular f is self-conjugated,
i.e., f is a real analytic function, if and only if n2 = n3.

Clearly a is a real root iff (a, b) (b is the coefficient of the Laurent expansion at z = a defined
in (1.5)) are reals iff the Schwarzian derivative of f is real iff f is real.

Therefore the number of real roots is equal to the number of real functions in F̂m,n. Since
n = n2+n3+1, the constraint n2 = n3 has one and only one solution if n is odd, and no solutions
if n is even. Therefore, if n is even, there are no normalised real functions f and thus Hm,n(z)
has no real roots.

On the other hand, if n is odd, the number of real functions equals the number of non-negative
pairs of integers n1, n4 such n1 + n4 = m− 1. This number is clearly m. �

We now prove the analogue of Theorem 3.3 for Hermite III oscillators.

Theorem 3.6. The ratio of two particular solutions of a level (m,n) Hermite III oscillator
belongs to the family F2 with m = n1 + n3 + 1 and n = n2 + n4 + 1.

Conversely, if f belongs to the family F2, then f is the ratio of two solutions of a level
(n1 +n3 +1, n2 +n4 +1) Hermite III oscillator. In other words −1

2S(f)(λ) is a level (n1 +n3 +1,
n2 + n4 + 1) Hermite III harmonic oscillator.

Proof. The proof is almost identical to the proof of Theorem 3.3 and therefore omitted. �
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Figure 6. Line complexes of Hermite III Nevanlinna functions.

3.3 Okamoto oscillators

In this subsection we discuss the Okamoto case. We identify a family of meromorphic functions
to which the oscillators related to roots of the generalised Okamoto polynomials belong. Firstly,
it is helpful to apply the following change of variables,

ψ̃(x) = x−1ψ
(

1
3

√
3x3
)
, (3.4)

which yields

ψ̃′′(x) = V10(x; a, b, θ)ψ̃(x) (3.5)

V10(x) = 3x4V
(

1
3

√
3x3
)

+ 2x−2 = x10 + 2
√

3ax7 + 3
(
a2 + 2(1− θ∞)

)
x4

− 3
√

3
[
b+

(
2θ∞ − 1

2

)
a
]
x+

(
2 + 9

(
θ2

0 − 1
4

))
x−2.

This equation has a regular singular point at x = 0 with indices 1
2±3θ0, and an irregular singular

point at x =∞ of Poincaré rank 11.

Definition. For m,n ∈ Z, we call the anharmonic oscillator (3.5) (or its potential) with θ0 =
1
2n−

1
6 and θ∞ = 1

2(2m+n+1), a level (m,n) Okamoto oscillator, if it Stokes multipliers satisfy

1 + sksk+1 = 0, k ∈ Z12. (3.6)

Definition 3.7. We say that a meromorphic function f belongs to the class Fn3 , n ∈ Z if it
has 13 singularities: 12 asymptotic values and 1 critical point. Moreover

• The Schwarzian derivative is normalised such that −1
2S(f)(x) = x10 +O(x9) as x→∞.

• The critical point lies at x = 0. It has multiplicity |3n−1|−1 for some n ∈ Z and f(0) = 0
if n ≥ 1 and f(0) =∞ otherwise.

• The asymptotic values w0, . . . , w11 in the Stokes sectors Ω10
k , k = 0, . . . , 11 are

w0 = 1, w1 = ζ−1, w2 = ζ, w3 = 1 , (3.7a)

w4 = ζ−1, w5 = ζ, w6 = 1, w7 = ζ−1, (3.7b)

w8 = ζ, w9 = 1, w10 = ζ−1, w11 = ζ, (3.7c)

where ζ = e
2πi
3 .
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• f possesses the symmetry

f(ζx) = ζ−1f(x). (3.8)
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Figure 7. Line complexes of functions in the class Fn3 with n = 0; p, q, r are arbitrary natural numbers.

Theorem 3.8. The ratio of two particular solutions of a level (m,n) Okamoto oscillator belongs
to the family Fn3 .

Conversely, if f belongs to Fn3 , then −1
2S(f)(x) is a level (m,n) Okamoto oscillator, for

some m ∈ Z.

Proof. It is immediately clear that f has a critical point at λ = 0, of multiplicity |3n− 1| − 1.
Furthermore, by equation (2.25), we have

E =

(
E12 0
0 E22

)(
s0e
−πi

3 1

s0e
πi
3 1,

)

and hence

f =
ψ̃+

φ̃−
=
E22

E12

φ̃1 − s0

(
1 + e

πi
3

)
φ̃0

φ̃1 + s0

(
1 + e

−πi
3

)
φ̃0

.

Therefore, upon rescaling f 7→ E12/E22f , it is easy to see that the Stokes data (3.6) imply
that f takes the asymptotic value wk defined in (3.7), in the Stokes sector Ωk, for k ∈ Z12. The
symmetry (3.8) is easily deduced from the fact that the potential satisfies V10(ζx) = ζV10(x).

Conversely, let f belong to Fn3 for some n ∈ Z. Then, by Theorem 3.2, it is clear that V (x) :=
−1

2S(f)(x) defines a Laurent polynomial, of degree 10. Furthermore, by the symmetry (3.8),
we have V (ζx) = ζV (x), hence V (x) is a Laurent polynomial with only 1 (mod 3) degree terms.
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Namely V (x) = V10(x; a, b, θ) for some a, b, θ0 and θ∞. By the characterisation near x = 0 of f ,
i.e., the first property in Definition 3.7, it is clear that θ0 = 1

2n−
1
6 .

Now, equations (3.7) imply that the Stokes multipliers of V10(x; a, b, θ) satisfy (3.6). In
particular, ’undoing’ the change of variables (3.4), equation (2.26), implies −e−2πiθ∞ = (−1)n.
So there exists an m ∈ Z such that θ∞ = 1

2(2m + n + 1) and indeed V10(x; a, b, θ) is a (m,n)
Okamoto oscillator. �

The description of the correspondence in the above theorem is weaker than the ones in the
Hermite cases, as the value of m is not understood on the coverings side of the correspondence.
To be more concrete, let us discuss the special case n = 0, i.e., f has no critical points, for
which it is easy to work out all possible line complexes for the F 0

3 family (up to rotation by π
2 i).

Indeed in such case the line complex must be given by Fig. 7, for some p, q, r ∈ N, where we
used b1 = 1, b2 = ζ, b3 = ζ−1 and the Jordan curve γ equal to the unit circle. The question
that remains, what values of p, q, r correspond to which value of m? We will not pursue this
question further here.

4 Asymptotic analysis of Hermite I oscillators

This section of the article is dedicated to the asymptotic analysis of the zeros and poles of rational
solutions of Hermite type, that is to say roots of the generalised Hermite polynomials Hm,n(z),
in the asymptotic regime n bounded and m→∞.

Our analysis is based on the solution of the inverse problem characterising zeros of Hermite I
solutions of PIV, see Theorem 2.2. For later convenience, we restate the inverse problem using
the variables {α = E−

1
2a,E = 2m+ n} introduced in equation (1.11) above.

Inverse Monodromy Problem. Given E,n ∈ N∗, determine the points (α, β) ∈ C2 such that
the anharmonic oscillator

ψ′′(λ) = VI(λ;α, β,E, n)ψ(λ),

VI(λ) = λ2 + 2E
1
2αλ− E

(
1− α2

)
− E

1
2β

λ
+
n2 − 1

4λ2
, (4.1)

satisfies the following two properties:

1. No-logarithm condition. The resonant singularity at λ = 0 is apparent.

2. Quantisation condition. The solution subdominant at λ = +∞, which we denote by

ψ0, is also subdominant at λ = 0, namely ψ0 ≡ ψ+ ∼ λ
n+1
2 as λ→ 0.

We tackle first Theorem 1.2, whose proof is divided in four steps:

1. In Section 4.1 we analyse the no-logarithm condition and by doing so we express the
unknown β as an n−valued function of the unknown α.

2. Section 4.2 is devoted to the large E limit of the solution ψ+ subdominant at λ = 0.

3. In Section 4.3 we compute, by means of the WKB method, the large E limit of the solu-
tion ψ0.

4. In Section 4.4, we match the asymptotic expansions of ψ+ and ψ0 to solve the inverse
monodromy problem in the large E limit and prove Theorem 1.2.

Afterwards we show, in Section 4.5, all above steps can be appropriately modified in order to
prove Theorem 1.3. Finally in Section 4.6 we comment on the distribution of zeros in the edge.
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4.1 Asymptotic analysis of the no-logarithm condition

Equation (4.1) has a resonant singularity at λ = 0 with exponents 1±n
2 . For generic values of the

parameters {α, β}, the Frobenius expansion of dominant solutions contain logarithmic terms.
The singularity is apparent in those cases when these logarithmic terms are absent.

The no-logarithm condition imposes a polynomial constraint on the coefficients of equa-
tion (4.1) which allow us to express β as an n-valued function of the variable α. The n branches

of this functions, which we denote by βj(α), j ∈ Jn, are asymptotic to ji(1−α2)
1
2 , in the large E

limit. Indeed, we have the following proposition.

Proposition 4.1. Fix a simply connected compact domain D in the α-plane, not containing
the points α = ±1. Then there exists an E0 > 0, and n analytic functions βj(α) = βj(α,E) on
D × [E0,∞), j ∈ Jn, such that the following statements hold true:

1. For every α ∈ D and E ≥ E0, there exist exactly n distinct values β such that the resonant
singularity of equation (4.1) is apparent, given by βj(α), j ∈ Jn.

2. For j ∈ Jn, the branch βj(α) has the following asymptotic expansion

βj(α,E) = ji
(
1− α2

) 1
2
(
1 + E−1rj(α,E))

)
,

where rj(α,E) is a bounded function on D × [E0,∞).

Proof. As a first simplification we apply a change of variables ν = E
1
2 (1 − α2)

1
2λ and β̃ =

β(1− α2)−
1
2 . The resulting equation reads

ψ′′ =

(
E−2(1− α2)−2ν2 + 2E−1

(
1− α2

)−3/2
αν − 1− β̃

ν
+
n2 − 1

4ν2

)
ψ. (4.2)

Clearly the singularity of the latter equation is apparent if and only if the singularity of equa-
tion (4.1) is apparent. Let us now consider the existence of a dominant solution, without
logarithmic terms, of (4.2),

ψ−(λ) = λ
−n+1

2

∞∑
k=0

γkλ
k, γ0 = 1.

Following the Frobenius method, the coefficients γk satisfy the recursion

k(n− k)γk = −β̃γk−1 − γk−2 + c1E
−1γk−3 + c2E

−2γk−4, (4.3)

where c1 = 2(1− α2)−3/2α and c2 = (1− α2)−2.

The recursion (4.3) is overdetermined at k = n. It has a solution, and thus infinitely many,
if and only if

−β̃γn−1 − γn−2 + c1E
−1γn−3 + c2E

−2γn−4 = 0.

Solving equation (4.3) recursively for all γk with k ≤ n− 1, the no-logarithm condition becomes
a single polynomial constraint of order n in β̃, of the form

Qn(β̃) +

bn
2
c∑

j=1

E−jQn,j(β̃, α) = 0,
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where Qn(β̃) is a polynomial of order n, and the Qn,j are certain polynomial expressions in β̃

and (1 − α2)−
1
2 . By definition, the equation Qn(β̃) = 0 is the no-logarithm condition for the

differential equation (4.2) with E set equal to ∞, namely

ψ′′ =

(
−1− β̃

ν
+
n2 − 1

4ν2

)
ψ.

The latter equation is the Whittaker equation in a non-standard normal form, see [50, Sec-
tion 13.14]. In fact, the general solution of this ODE is a linear combination of the Whittaker
functions Mκ,µ(z) and Wκ,µ(z) with κ = −1

2βi, µ = 1
2n and z = 2iν. From the formula [50,

equation (13.14.18)], it follows that the above ODE has an apparent singularity if and only if
β̃ = ji, for some j ∈ Jn. The thesis now easily follows. �

As a consequence of the latter proposition, we have solved half of the inverse monodromy
problem. Indeed, we can now limit our study to the following inverse problem depending on
just one unknown α.

Reduced Inverse Monodromy Problem. Upon fixing a suitable domain D and E0 > 0 as
in Proposition 4.1, given j ∈ Jn and E ≥ E0, determine all α ∈ D such that the anharmonic
oscillator

ψ′′(λ) = VA (λ;α,E, n)ψ(λ), (4.4)

VA = λ2 + 2αE
1
2λ− (1− α2)E −

ji(1− α2)
1
2E

1
2

(
1 + E−1rj(α,E))

)
λ

+
n2 − 1

4λ2
,

satisfies the single constraint

• Quantisation condition. The solution subdominant at λ = +∞, is also subdominant at

λ = 0, namely ψ0(λ) ≡ ψ+(λ) ∼ λ
n+1
2 as λ→ 0.

Here the function rj(α,E) is an asymptotically irrelevant contribution.

4.2 Whittaker asymptotics near the origin

In this subsection we find an approximation for the solution ψ+(λ) of equation (4.4) that is
valid uniformly in E, in some E-dependent neighbourhood of the origin, slowly shrinking as
E → +∞. According to our result, the solution ψ+ takes the asymptotic form

Σ(λ; j, φ, χ) := sin
(
−E

1
2
(
1− α2

) 1
2λ+ ϕ− 1

2ji log λ+ iχ
)
, (4.5a)

ϕ =
(n+ 3)π

4
, χ = 1

2

[
logFn,j − j log

(
2E

1
2
(
1− α2

) 1
2
)]
. (4.5b)

Here Fn,j is defined in (1.12). This approximation is valid for λ belonging to a domain which

scales as Eγ−
1
2 , for some γ < 1

2 , on which the modulus of the function Σ is uniformly bounded.
We therefore consider subsets of the λ-plane, which take the form

Λ+ =
{
<λ > 0, |λ| = Eγ−

1
2 s and

∣∣=[E 1
2
(
1− α2

) 1
2λ+ 1

2ji log
(
E

1
2
(
1− α2

) 1
2λ
)]∣∣ ≤ c}.(4.6)

for some fixed positive real numbers s, c, γ with γ < 1
2 . On such domains we have the following

estimate for the solution subdominant at zero of equation (4.4).
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Proposition 4.2. Upon fixing a suitable domain D and E0 > 0 as in Proposition 4.1 and
j ∈ Jn, positive real numbers s, c, γ with γ < 1

2 and defining Λ+ as in (4.6), let ψ+(λ) be the
subdominant solution at zero of (4.4) normalised as follows

ψ+(λ) =
(
E

1
2
(
1− α2

) 1
2λ
)n+1

2
(
1 +O(λ)

)
.

Then there exists an E1 ≥ E0 such that for all E ≥ E1, the solution ψ+(λ) has the following
properties:

(i) ψ+(λ) is a holomorphic function of α in D;

(ii) There exists a constant C – independent of α and E – such that for all λ ∈ Λ+,

|ψ+(λ)− Σ(λ; j, ϕ, χ
)
| ≤ CE−γ′ ,∣∣E− 1

2ψ′+(λ) + Σ
(
λ; j, ϕ+ 1

2π, χ
)∣∣ ≤ CE−γ′ , (4.7)

where Σ, ϕ and χ are as defined in equations (4.5) with γ′ = min{1− 2γ, γ}.

Proof. Part (i) of the proposition is a standard application of the regular perturbation theory
for linear ODEs. We divide the proof of part (ii) into several steps. Firstly, we apply the change

of variables uE(ν) = ψ+

(
E−

1
2 (1− α2)−

1
2 ν
)

to equation (4.4) to obtain

u′′(ν) = WE(ν)u(ν),

WE(ν) = E−2
(
1− α2

)−2
ν2 + 2αE−1

(
1− α2

)− 3
2 ν − 1−

ji
(
1 + E−1rj(α,E)

)
ν

+
n2 − 1

4ν2
.

Next we compare the solution uE(ν) = ν
n+1
2 (1 +O(ν)) with u∞(ν), the subdominant solution

of the same equation after E has been set equal to +∞,

u′′(ν) =

(
−1− ji

ν
+
n2 − 1

4ν2

)
u(ν). (4.8)

As was already mentioned in the proof of Proposition (4.1), the latter equation is the Whittaker
equation in disguise; the general solution of this ODE is a linear combination of the Whittaker
functions Mκ,µ(z),Wκ,µ(z) with κ = −1

2j, µ = 1
2n and z = 2iν. In particular

u∞(ν) = (2i)−
n+1
2 Mκ,µ(2iν), κ = −1

2ji, µ = 1
2n. (4.9)

We now compare the solutions uE(ν) and u∞(ν).

Claim. Let V = {<ν > 0, |ν| ≥ 1 and=
[
ν − 1

2ji log ν
]
≤ c}, then there exist constants C1, C2,

C3 — independent of α and E – such that for all ν ∈ V , the following estimates hold

|uE(ν)− u∞(ν)| ≤ C1E
−1|ν|2 + C2E

−2|ν|3 + C3E
−1 log |ν|,

|u′E(ν)− u′∞(ν)| ≤ C1E
−1|ν|2 + C2E

−2|ν|3 + C3E
−1 log |ν|.

To prove the claim, let us first define

R(ν) = E−2
(
1− α2

)−2
ν2 + 2αE−1

(
1− α2

)− 3
2 ν + E−1 rj(α,E)

ν
.

It is a standard result (see, e.g., [15, Section 4]) that uE(ν) satisfies the following integral
equation

uE(ν) = u∞(ν)−
∫ ν

0
K(ν, t)R(t)uE(t)dt,
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provided the integral equation has a solution. Here K(ν, t) = u∞(ν)ũ(t)−u∞(t)ũ(ν), where ũ(ν)
is any solution of Whittaker equation (4.8) such that the Wronksian W [u∞, ũ] = 1; for example
ũ(ν) = 1

nMκ,−µ(2iν), where κ, µ are defined in equation (4.9) above.

In order to prove the claim we need to study the integral operator

K[f ](ν) = −
∫ ν

0
K(ν, t)R(t)f(t)dt.

To this end, note that

K(ν, t) =
1

n
(νt)−

n−1
2
(
νn − tn

)(
1 +O(ν) +O(t)

)
ν, as t→ 0, (4.10)

since ũ(ν) = ν
1−n
2

n (1 +O(ν)).

Let us define B = {|ν| ≤ 1: | arg ν| ≤ π
4 } and Hn the Banach space of continuous functions

in B, analytic in its interior and with finite norm ||f ||n = sup
ν∈B
|ν−

n+1
2 f(z)|. It is easy to see

that K is a bounded operator on Hn with operator norm

||K||n ≤ C0

∫ 1

0
|tR(t)|dt,

where C0 = 2 sup
|t|≤|ν|

∣∣K(ν, t)t
n−1
2 ν−

n+1
2

∣∣ <∞, because of (4.10).

Since |
∫ 1

0 |tR(t)|dt is of order E−1, we have, for E big enough, that ||K||n is smaller than
one, and hence the resolvent series converges. Therefore, for E big enough, uE(1) = u∞(1) +
c1(α,E)E−1 and u′E(1) = u′∞(1) + c2(α,E)E−1, for some bounded functions c1, c2.

Let us call û(ν) the solution of (4.8) which solves the Cauchy problem u(1) = uE(1), u′(1) =
u′E(1). Because of our discussion so far,

û(ν) =
(
1 + E−1c̃1(α,E)

)
u∞(ν) + E−1c̃2(α,E)ũ(ν), (4.11)

for some bounded functions c̃1, c̃2.

Note that uE also solves the integral equation

uE(ν) = û(ν)−
∫ ν

1
K̂(ν, t)R(t)uE(t)dt,

where K̂(ν, t) = û(ν)u(t)− û(t)u(ν), with u(ν) is any solution of Whittaker equation (4.8) such
that the Wronksian W [û, u] = 1.

To finish the proof of the claim we study the new integral operator

K̂[f ](ν) = −
∫ ν

0
K̂(ν, t)R(t)f(t)dt.

on the Banach space Hρ of functions continuous on Vρ = V ∩ {|ν| ≤ ρ}, analytic in its interior,
equipped with the standard supremum norm, which we denote by || · ||∞,ρ.

From a standard WKB estimate, it follows that the general solution of the Whittaker equation
(and its first derivatives) is, for large ν, asymptotic to a linear combination of the functions
exp(±iν ∓ j

2 log ν). Therefore û(ν), u(t), K̂(ν, t) and its first derivatives are all uniformly
bounded on V . The following estimate on the operator norm then easily follows,∥∥K̂∥∥∞,ρ ≤ (d1E

−1ρ2 + d2E
−2ρ3 + d3E

−1 log ρ
)
,
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for some d1 > 0, d2 > 0, d3 > 0 independent of α. The latter estimate together with the
standard Volterra property

∥∥K̂N∥∥∞,ρ ≤ ||K̂||N∞,ρN !
, N ∈ N

leads to the following asymptotic estimate, for E big enough

||uE − û||∞,ρ ≤ 2
(
d1E

−1ρ2 + d2E
−2ρ3 + d3E

−1 log ρ
)
.

The same kind of estimate also holds for the difference of the derivatives because the kernel K̂
has bounded derivatives. The claim now follows from these estimates and equation (4.11).

We have come to the third and last step of the proof, which is a straightforward application
of the known asymptotic results of the Whittaker functions. From [50, equation (13.14.21)], we
know there exists a C4 such that in the domain V of the claim, the following estimates hold∣∣∣∣u∞(ν)− sin

(
−ν +

3 + n

4
π − 1

2ji log ν + 1
2 i logFn,j

)∣∣∣∣ ≤ C4ν
−1,∣∣∣∣u′∞(ν) + cos

(
−ν +

3 + n

4
π − 1

2ji log ν + 1
2 i logFn,j

)∣∣∣∣ ≤ C4ν
−1.

At the same time, if we let |ν| = Eγs, then, from the claim, we obtain that there exists a cons-
tant C5 depending only on s such that the following estimates hold

|uE(ν)− u∞(ν)| ≤ C5E
−1+2γ ,

|u′E(ν)− u′∞(ν)| ≤ C5E
−1+2γ .

Combining the two sets of estimates, noticing that V ∩ {|ν| = Eγs} coincides with the set Λ+,

after the change of variable λ = E−
1
2 (1− α2)−

1
2 ν, we obtain the thesis. �

Observe that the best approximation is achieved with the choice γ = 1
3 , in which case the

error scales with exponent −1
3 .

4.3 Asymptotic in the transition region

In this subsection we study the asymptotic behaviour, as E → ∞, of the solution ψ0 of equa-
tion (4.4) subdominant in the Stokes sector S0, in the right half-plane <λ > 0. To this aim we use
the well-known WKB method. Since the literature is abundant, we refer to it (in particular [57]
and [37]) for all basic results.

In order to compare the solution ψ0 with the formula we derived for the solution ψ+, we need

to compute the asymptotic expansion of ψ0 for points scaling as Eγ−
1
2 with γ < 1

2 (even though
the WKB analysis actually yields uniform estimates in the whole complex plane). Therefore we
fix a compact subset K of the strip {0 < <λ < 1−<α} and we define the set

Λ0 =
{
λ ∈ C s.t. E

1
2
−γλ ∈ K

}
.

We have the following result.

Proposition 4.3. Fix a compact simply-connected domain D of the α-half-plane <α < 1 and
a positive number γ < 1

2 . Then there exists an E0 > 0 such that for E ≥ E0, upon appropriate
normalisation of the solution ψ0(λ;α) of equation (4.4), subdominant in the Stokes sector S0,
the solution ψ0(λ;α) depends holomorphically on α in D and there exists a constant C, such
that for all λ ∈ Λ0 and α ∈ D,∣∣ψ0(λ;α)− Σ(λ; j, ϕ′, χ′)

∣∣ ≤ CE−γ̃(|Σ(λ; j, ϕ′, χ′)|+
∣∣Σ(λ; j, ϕ′ + 1

2π, χ
′)∣∣),
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∣∣E− 1
2
∂ψ0(λ;α)

∂λ
+ Σ

(
λ; j, ϕ′ + 1

2π, χ
′)∣∣ ≤ CE−γ̃(|Σ(λ; j, ϕ′, χ′)|+

∣∣Σ(λ; j, ϕ′ + 1
2π, χ

′)∣∣),
ϕ′ = 1

2E
[
−α
(
1− α2

) 1
2 + arccos(α)

]
+ 1

4π, χ′ = 1
2j log

(
2
(
1− α2

)
E−

1
2
)
, (4.12)

where γ̃ = min{2γ, 1− 2γ} and the function Σ(λ; j, ϕ, χ) is defined in equation (4.5).

Notice that no generality is lost in restricting to <α < 1, as the roots of the generalised
Hermite polynomials are symmetric under reflection in the imaginary axis.

In the proof of the above proposition, we assume that the reader has some familiarity with the
WKB method. We begin the proof by analysing the turning points, i.e., zeros of the potential,
of equation (4.4). A detailed dominant balance analysis, in the large E limit of the potential VA
in equation (4.4), shows that asymptotically there are two turning points in the right half-plane.

One of order E
1
2 and the other of order E−

1
2 , which we denote respectively by λ+ and λ−. In

fact we have

λ+ = E
1
2 (1− α) + E−

1
2

ji

2(1− α)
+O

(
E−

3
2
)
, (4.13)

λ− = E−
1
2

√
n2 − j2 − 1− ji

(1− α2)
1
2

+O
(
E−

3
2
)
.

In our analysis only λ+ plays a role because the phase-shift originating from the turning point λ−
is already taken into account in the Whittaker-like asymptotic, see Proposition 4.2.

The WKB theory is based around the analysis of the phase function

SA(λ) = −i
∫ λ+

λ

√
−VA(µ)dµ,

where VA is the potential in equation (4.4). We compute the asymptotic behaviour of the phase
function in the following lemma.

Lemma 4.4. Fix a positive t and denote H = {t ≤ <λ ≤ E
1
2 (1 − <α)}. Then the phase

function SA admits the following asymptotic expansion in E, on H,

SA(λ) = 1
4E

(
−2
(
α+ E−

1
2λ
)√

1−
(
α+ E−

1
2λ
)2 − 2 sin−1

(
α+ E−

1
2λ
)

+ π

)
(4.14)

+ 1
2ji log

([√
(1− α2)

(
1−

(
α+ E−

1
2λ
)2)− α(α+ E−

1
2λ
)

+ 1
]
/
(
E−

1
2λ
))

+O
(
E−

1
2

+ε
)
,

for any ε > 0.

Moreover, f ix positive constants s and γ < 1
2 and let λ = E−

1
2 +γs, then SA(λ) admits the

expansion

SA(λ) = 1
2E
[
− α

(
1− α2

) 1
2 + cos−1 α

]
− E

1
2
(
1− α2

) 1
2λ+ 1

2ji log
2(1− α2)

E
1
2λ

+O
(
E−γ̃

)
,

where γ′ = min{γ, 1− 2γ}.
The above errors O(E−

1
2

+ε) and O(E−γ̃) are uniform w.r.t. α ∈ D, where D is the domain
defined in Proposition 4.3.

Proof. The proof is in Appendix C. �
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Figure 8. The right half-plane, with the turning point λ+ and the Stokes lines emanating from it, the

Stokes sectors Σ−1,0,1. The further point λr and the lines γA, γS are used in the proof of Lemma 4.6.

In order to understand the WKB computation it is useful to draw the Stokes graph of the
potential, that is the union of the Stokes lines <

∫ λ
λ∗
√
VAdµ = 0 where λ∗ is any turning point

of VA(λ); we refer to [37] for more details.

We are interested only in the Stokes lines emanating from λ+, which can be read off formu-
la (4.14), see Fig. 8.

Of the three Stokes lines emanating from λ+, one is the boundary between the Stokes sector Σ0

and Σ+1, another one is the boundary between the Stokes sector Σ0 and Σ−1, and the third one
is the boundary between Σ+1 and Σ−1. Notice that the region Λ+, where the behaviour of ψ+

is known from Proposition 4.2, lies in the proximity of the third Stokes line, along which the
solutions are oscillatory in nature3.

Therefore in order to compare ψ0 and ψ+ we need to compute the asymptotic behaviour
of ψ0 in the union of the Stokes domains Σ1 and Σ−1. To this aim we express ψ0 as a linear
combination of the solutions ψ±1(λ) subdominant in the Stokes domains Σ±1. Before doing so
we need to define the error function ρ±1 that controls the WKB estimates,

ρ±1(λ) = inf
`

∫
`

∣∣∣∣∣4V ′′(µ)V (µ)− 5V ′(µ)2

4V (µ)
5
2

∣∣∣∣∣ dµ.
Here ` : [0, 1)→ C is any path such that:

(i) `(0) = λ;

(ii) ±<SA(`(t)) is monotonically increasing;

(iii) lim
t→1
<SA(`(t)) = ±∞;

see [37] for more details. We have the following lemma.

3Notice that the notion of Stokes sectors Σk that we use in WKB approximation does not coincide with the
notion of Stokes sectors Ωk used in Theorem 2.2. However for large λ their boundaries are asymptotic.
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Lemma 4.5. There exist subdominant solutions ψ̃±1 in Σ±1 of equation (4.4), uniquely cha-
racterised by the asymptotic behaviour

ψ̃±1(λ;α) = VA(λ)−
1
4 ei±(SA(λ)−π

4
)
(
1 + o(1)

)
, λ ∈ Σ±1 and |λ| � 0.

Furthermore the following hold true:

(i) Both these subdominant solutions depend holomorphically on α in D.

(ii) The solution ψ̃0 = ψ̃1 − ψ̃−1 is subdominant in Σ0.

(iii) The solution ψ̃0(λ) has the following asymptotic expansion in the union of the Stokes
domains Σ+1 and Σ−1,

ψ̃0(λ) = VA(λ)−
1
4
[
c1(λ)ei(SA(λ)−π

4
) − c−1(λ)e−i(SA(λ)−π

4
)
]
,

∂ψ̃0(λ)

∂λ
= −VA(λ)

1
4
[
c̃1(λ)ei(SA(λ)−π

4
) + c̃−1(λ)e−i(SA(λ)−π

4
)
]
, (4.15)

for some multiplicative correction terms c±1, c̃±1 such that |c±1(λ)− 1| = O
(
ρ±1(λ)

)
and

|c̃±1 − c±1| ≤
∣∣ V ′(λ)

4V (λ)
3
2
c±1

∣∣.
Proof. i) For each α, the solution ψ̃±1(λ;α) are just multiples of the subdominant solutions ψ±1

defined in equation (2.20). More precisely we have

ψ̃±1 = ψ±1 × exp

{
lim

λ→±i∞

(
SA(λ)− g

(
λ,E

1
2α
)

+
E

2
log λ

)}
,

where the ‘g-function’ g(λ, z) was defined in (2.2). It is a standard result that the subdominant
solutions (sometimes called Sibuya’s solutions) ψ±1(α) are entire functions of α with that given
normalisation, see, e.g., [54]. Since the exponential factor is a holomorphic function of α ∈ D,
the solutions ψ̃±1 are as well.

ii) Since, by construction, ψ̃1 and ψ̃−1 have the same dominant asymptotic behaviour in Σ0,
their difference is subdominant.

iii) The estimate (4.15) follows from the standard WKB estimates (see, e.g., [37, Appendix]
or [19]).

ψ̃±1(λ) = VA(λ)−
1
4 c±1(λ)e±i(SA−

π
4

),

∂ψ̃±1(λ)

∂λ
= −VA(λ)

1
4 c̃±1(λ)e±i(SA−

π
4

),

which finishes the proof of the lemma. �

The error functions ρ±1 of the WKB approximation are estimated in the following lemma.

Lemma 4.6. Given the hypothesis in Proposition 4.3, there exist constants E0, C such that, for
E ≥ E0, the following inequality holds

ρ±1(λ) ≤ CE−2γ ,

for all (λ, α) ∈ Λ+ ×D.

Proof. The proof is in Appendix C. �
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We can now complete the proof of Proposition 4.3. To this aim, we set ψ0(λ;α) = E
1
4 ψ̃0(λ;α),

where ψ̃0 is the solution studied in Lemma 4.5(ii). Due to Lemma 4.6 and Lemma 4.5(iii), there
exists a C such that

|1− c±1| ≤ CE−2γ , |1− c̃±1| ≤ CE−2γ ,

for all (λ, α) ∈ Λ+×D. In fact, the first estimate follows directly from the estimate |1− c±1| =
O(ρ±1), the second arises from the previous estimate and the fact that also V ′(λ)

4V (λ)
3
2

= O(E−2γ)

for (λ, α) ∈ Λ+ ×D. The estimate (4.12) now follows from Lemma 4.4.

4.4 Matching and asymptotics of poles

In this subsection we complete the proof of Theorem 1.2, by comparing the asymptotic form
of the solutions ψ+(λ) and ψ0(λ) of equation (4.4). These were computed in Propositions 4.2
and 4.3, on the respective domains Λ+ and Λ0; these domains satisfy Λ+ ⊂ Λ0.

According to these results, on the domain Λ+ the solutions ψ0 and ψ+ share the same
trigonometric form but for a generally different phase, see equations (4.7) and (4.12). The
phase-difference is the following function of α,

Φ(α;E) =
E

2

(
−α
(
1− α2

) 1
2 + cos−1(α)

)
− (2 + n)π

4

+ i

(
j log

(
2
(
1− α2

) 3
4E

1
2
)
− 1

2
logFn,j

)
. (4.16)

Here Fn,j =
Γ
[

1
2 (1+n+j)

]
Γ
[

1
2 (1+n−j)

] , as defined in (1.12). It plays a major role in our analysis. In fact, we

can express the Wronskian W [ψ0, ψ+] = ψ0ψ
′
+ − ψ′0ψ+ in terms of Φ(α;E).

Proposition 4.7. Here D is a simply connected compact subset of the vertical strip −1 < <α < 1
and ψ+(λ) and ψ0(λ) are the solutions of (4.4) studied in Proposition 4.2 and 4.3. For E big
enough we have the following decomposition of the Wronskian,

E−
1
2W [ψ0, ψ+] = sin

(
Φ(α;E)

)
+ E−

1
3R(α,E), (4.17)

where Φ(α;E) is defined in (4.16) and R(α,E) is an analytic function of α ∈ D such that

sup
α∈D,E≥E0

∣∣∣∣∣ R(α,E)

exp
(
iΦ(α,E)

)∣∣∣∣∣ < +∞.

Proof. R is analytic because ψ0, ψ+ and sin(Φ(α;E)) are analytic in D. The estimate is a direct
consequence of Proposition 4.2 and 4.3, specialised to γ = 1

3 . �

According to the proposition above, the asymptotic distribution of the zeros of Hm,n(α)
with n bounded is determined by the zeros of the transcendental equation sin(Φ(α;E)) = 0.
Equivalently

1

2

(
α
(
1− α2

) 1
2 − cos−1(α)

)
+
π

4
− E−1i

(
j log

(
2
(
1− α2

) 3
4E

1
2
)
− 1

2
logFn,j

)
=
πk

E
(4.18)

for some k, integer if m is odd, half-integer if m is even, whose range will be determined below.

Notice that for any compact subset of the horizontal strip−1 < <α < 1, equation (4.18) is just

a vanishing perturbation of the equation f(α) = πk
E , where f(α) = 1

2

(
α(1−α2)

1
2 −cos−1(α)

)
+ π

4 ,
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because 1/f ′(α) = (1− α2)−
1
2 is bounded. The equation f(α) = πk

E has one and only one (and
real) solution in the ’bulk’ for each |k| ≤ E

4 and no solutions at all if |k| > E
4 .

Since we are interested in the solutions of equation (4.18) only up to an additive error of the

order E−
4
3 , equation (4.18) can be greatly simplified. Firstly, the imaginary part of the solutions

is of order E−1 logE and thus we can linearise the system with respect to αI = =α at αI = 0.
Secondly, we can discard all terms of order E−δ, δ > 4

3 in the equation that we obtained after
the linearisation with respect to αI .

These two simplifications lead to the system (1.13), whose solutions αj,k we described at the
beginning of the present section, and to the following lemma, whose details of the proof are left
to the reader.

Lemma 4.8. For j ∈ Jn denote, as in Definition 1.1, by αj,k the unique solution of the
system (1.13). Fix 0 < σ < 1

4 , set dR := f−1
(
π
4 (1 − 4σ)

)
and let dI > 0 be such that

D0 := {|<α| ≤ dR, |=α| ≤ dI} contains all points αj,k, with |k| ≤ σE and j ∈ Jn, for E
large enough, say E ≥ E0.

Now, for an arbitrarily small but fixed ε, let D := {|<α| ≤ dR + ε, |=α| ≤ dI}. Then
there exists an E1 ≥ E0 and a constant C such that, for all E ≥ E1, |k| ≤ σE and j ∈ Jn,
equation (4.18) has a unique solution α̃j,k in D and

|α̃j,k − αj,k| ≤ CE−2 log2E.

We have collected all the intermediate results required to prove Theorem 1.2, that we state
again here.

Theorem. Fix 0 < σ < 1
4 , then there exist a constant E0 and Cσ such that, for all E ≥ E0

and |k| ≤ σE, the polynomial Hm,n(z) has one and only one zero in each disc of the form{∣∣z − E 1
2αj,k

∣∣ ≤ CσE− 5
6

}
.

Proof. We follow the proof of [38, Theorem 1] quite closely. Because of Lemma 4.8, the thesis
is equivalent to: W [ψ0, ψ+](α;E) and sin(Φ(α;E)) have the same number of zeros (namely one)

in the disk |α− αj,k| ≤ CE−
4
3 .

The proof of this statement is based on Proposition 4.7 and the classical Rouché’s theorem:
Let K be a compact domain of the complex plane with simple boundary ∂K. If p and q are
holomorphic functions, in a larger domain K ′, such that |q| < |p| on ∂K, then p and p+ q have
the same number of zeros – counting multiplicities – inside K.

In our setting K is a disc centred in αj,k with radius κE−ρ for some κ, δ to be defined below,

p = sin
(
Φ(α;E)

)
and q = E−

1
2W [ψ0, ψ+](α;E)− sin

(
Φ(α;E)

)
.

Since σ < 1
4 , the αj,k belong to a bounded subset D of the bulk and |α2

j,k − 1| is therefore
uniformly bounded from below by a positive constant. Hence, by means of a Taylor expansion
estimate, for any κ > 0, ρ > 0 there exists some numbers, cj,k uniformly bounded (with the

bound depending just on κ, ρ), such that ||p(α)
∣∣−E1−ρκ|1 − α2

j,k|
1
2

∣∣ ≤ cj,kE
1−2ρκ2 for any α

belonging to the circle with centre αj,k and radius κE−δ.

Similarly on the union of all these circles | exp
(
iΦ(α,E)

)
| is uniformly bounded and therefore,

by Proposition 4.7 there exists a C ′ such that, for E large enough, |q| ≤ E−
1
3C ′ on the union of

all these circles.

Hence, for E big enough, if ρ = 4
3 and κ > 2C ′ sup

j,k
|1−α2

j,k|
− 1

2 , then |q| < |p| on all the circles

with centre αj,k and radius κE−ρ. This concludes the proof. �
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4.5 Proof of Theorem 1.3.

Recall that in stating and proving Theorem 1.2 and all necessary preparatory lemmas and
propositions, we worked with a compact subset D of the α-plane not containing the points
α = ±1. This is because all estimates involved break down at those two points.

However, we can improve our results without modifying the procedures if we let DE vary
with E and approach the points ±1 slowly enough. To this aim we fix δ > 1

3 and we assume
that the distance of DE from α = ±1 is greater or equal to a constant times E−1+δ.

Indeed, we can prove Theorem 1.3 that we state again here for convenience.

Theorem. Fix 1
3 < δ ≤ 1 and s > 0. There exist a constant E0 and a constant Cs such that, if

E ≥ E0, then for all |k| ≤
(

1
4 − sE

3−1+δ
2

)
E, the polynomial Hm,n(z) has one and only one zero

in each disc of the form
∣∣z − E 1

2αj,k
∣∣ ≤ CsE−δ+ 1

6 .

Proof. We assume that α ∈ DE , where DE is a compact simply connected domain whose
distance to the points α = ±1 is bigger or equal than a constant times E1−δ. In other words,
there exists a c > 0 such that sup

α∈DE
|(1− α2)−1| ≤ cEδ−1.

It turns out that the statement of Propositions 4.1, 4.2, 4.3 and 4.7 holds true if we appro-
priately modify the error bounds.

Below, we list the necessary modification, whose verification is straightforward.

(i) In Proposition 4.1(ii). The equation (4.7) must be modified as follows. For j ∈ Jn, the
branch βj(α) has the following asymptotic expansion

βj(α,E) = ji
(
1− α2

) 1
2
(
1 + E

1−3δ
2 rj(α,E))

)
,

where rj(α,E) is a bounded function on DE × [E0,∞).

(ii) Proposition 4.2, having fixed γ = 3δ−1
6 , holds true if the error terms in the estimate (4.7)

are modified as follows

|ψ+(λ)− Σ(λ; j, ϕ, χ
)
| ≤ CE−

3δ−1
6 ,∣∣E− 1

2ψ′+(λ) + Σ
(
λ; j, ϕ+ 1

2π, χ
)∣∣ ≤ CE− 3δ−1

6 .

(iii) Proposition 4.3, having fixed γ = 3δ−1
6 , holds true if the error bound in equations (4.7) is

modified as follows∣∣ψ0(λ;α)− Σ(λ; j, ϕ′, χ′)
∣∣ ≤ CE− 3δ−1

6
(
|Σ(λ; j, ϕ′, χ′)|+

∣∣Σ(λ; j, ϕ′ + 1
2π, χ

′)∣∣),∣∣∣∣E− 1
2
∂ψ0(λ;α)

∂λ
+ Σ

(
λ; j, ϕ′ + 1

2π, χ
′)∣∣∣∣

≤ CE−
3δ−1

6
(
|Σ(λ; j, ϕ′, χ′)|+

∣∣Σ(λ; j, ϕ′ + 1
2π, χ

′)∣∣).
(iv) Proposition 4.7 holds true if the error bound in equation (4.17) is modified as follows

E−
1
2W [ψ0, ψ+] = sin

(
Φ(α;E)

)
+ E−

3δ−1
6 R(α,E).

(v) Finally the estimate of Lemma 4.8 about the distance among solutions α̃j,k of equa-
tion (4.18) and the points αj,k is modified as follows: For k in the range of the present
Theorem, there exists a constant C depending on s such that

|α̃j,k − αj,k| ≤ CE−2δ log2E.



Poles of Painlevé IV Rationals and their Distribution 41

We notice that as <α→ 1−, we have f(α) = 2
3
2

3 (1−α)
3
2 +O

(
(1−α)

5
2

)
(and a similar behaviour

for <α → −1+). Therefore, we can appropriately choose a c > 0 such that all solutions of the
system (1.13), with k in the given range, belong to the strip −1 + cE−1+δ ≤ <α ≤ 1− cE−1+δ.

The proof can then be continued following the very same steps of the proof of Theorem 1.2; we

prove that Hm,n

(
E

1
2α
)

has one and only one zero in each disc of the form |α−αj,k| ≤ CsE−
5+3δ

6 .

Indeed we again set p = sin(Φ(α;E)) and q = E−
1
2W [ψ0, ψ+](α;E)− sin(Φ(α;E)).

We fix some κ, ρ > 0 and estimate the value of |p(α)| for α belonging to the circle with
centre αj,k and radius κE−ρ. By means of a Taylor series estimate, and taking in account that
|1− α2| ≥ cE−1+δ and δ > 1

3 , we obtain the following lower bound of p on the aforementioned
circles: if E is big enough, there exists a c′ (depending on c) such that, on the union of all these

circles, |p(α)| ≥ c′E
1+δ
2
−ρ provided ρ > 1− δ. Due to the above modification of Proposition 4.7,

there exists a c′′ (depending on c) such that on the union of the circle |q(α)| ≤ c′′E−
3δ+1

6 .

Therefore as long as 1 − δ < ρ ≤ δ + 1
3 , and E is big enough, we can find a κ such that

|q| < |p| on the aforementioned circle. The thesis then follows from Rouché’s theorem. �

4.6 Edge asymptotics

In this last section of the paper we briefly discuss the edge asymptotic in the regime n bounded
and E = 2m+n→∞. We anticipate below some preliminary results about the edge-asymptotic
and we postpone more details and full proofs to a further publication.

Recall that the proof of Theorem 1.3 breaks down when 1− α2 = O
(
E−

2
3

)
, because in that

regime the error of our asymptotic method is of the same order as the distance between the
roots, as depicted in Fig. 9.

m = 16 m = 144

Figure 9. Rescaled roots of Hm,5 in upper right corner. In blue numerically exact location, in red

the asymptotic approximation αj,k, encircled by a circle of radius CsE
− 2

3 , with Cs = 1
6 , for the range

m+1
2 − k ∈ {0, 1, 2}, j ∈ {0, 2, 4}. Even though the approximation by αj,k still look reasonably good, it

does not give the dominant term in the asymptotic expansion of extreme roots. This is reflected in the

fact that the absolute error of Theorem 1.3, if extrapolated at the value δ = 1
3 , is of the same order of

the distance between roots, namely E− 2
3 .

However, our procedures can be adapted appropriately to study the limit 1−α2 = O
(
E−

2
3

)
.

Without losing generality we restrict our discussion to the case α→ 1.
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As a first step we make the Ansatz 1 − α = κE−
2
3 and look for κ of order E0 that solves

the inverse monodromy problem for Hermite I rational solutions of PIV, equation (4.1). Upon

inserting the Ansatz in equation (4.1), redefining the unknown β → E
1
3β, and discarding lower

order contributions, equation (4.1) reads

ψ′′(λ) = Vκ(λ;κ, β,E, n)ψ(λ),

Vκ(λ) = λ2 + 2E
1
2λ− 2κE

1
3 − E

1
6β

λ
+
n2 − 1

4λ2
.

We look for (κ, β) such that no-logarithm and quantisation conditions hold.
No-logarithm in the edge. Reasoning as in Proposition 4.1, we can express the unknown

β as an n-valued function of the unknown κ. To this aim, we apply the change of coordinates
ν = E−

1
6λ. The resulting equation reads

ψ′′ =

(
E−

2
3 ν2 + 2ν − 2κ− β

ν
+
n2 − 1

4ν2

)
ψ.

Therefore β = βj(κ)
(
1 + O(E−

2
3 )
)

where βj(κ), j ∈ Jn is one of the n solutions of the no-
logarithm condition for the equation

ψ′′ =

(
2ν − 2κ− β

ν
+
n2 − 1

4ν2

)
ψ. (4.19)

The above equation does not belong to the any standard class of linear special functions listed
in [50] or [16]. In particular, the solution of the no-logarithm condition for the latter equation
does not seem to have a simple factorisation. For the sake of the present discussion we assume
that for <κ > 0, the functions βj(κ) are all distinct as in the case of the Whittaker equation.

Airy-like model near the origin. Applying again the change of variable ν = E−
1
6λ, and

reasoning as in Proposition 4.2, we deduce that the solution ψ+ is asymptotic to the solution
u+(ν), subdominant at λ = 0, of the equation

u′′(ν) =

(
2ν − 2κ− βj(κ)

ν
+
n2 − 1

4ν2

)
u(ν). (4.20)

The latter equation is an Airy equation with a centrifugal term. The solution u+(ν) is thus for
generic values of κ dominant at +∞. However, we say that κ is an eigenvalue of equation (4.20)
if u+(ν) is subdominant at +∞.

Matching. The asymptotic analysis of the solution ψ0 simplifies in this regime. In fact, in
the large E limit, the turning points λ+ and λ− coalesce with the Fuchsian singularity λ = 0.

Therefore the standard approximation ψ0 ∼ V
− 1

4
A e−SA is valid in a region close to λ = 0, where

the approximation of ψ+ by u+ is also valid. Finally, reasoning as in Proposition 4.7, we deduce
that, asymptotically, the solutions ψ+ and ψ0 are proportional if and only if κ is one of the
eigenvalue of (4.20).4

Extremal asymptotic. We have therefore arrived at a (preliminary) description for the
edge asymptotic for roots with extreme real part, without entering into the details of estimating
the error of the approximation: Let (κ, β) be such that the Airy-like equation (4.19) satisfies
the no-logarithm condition and the quantisation condition lim

ν→+∞
u+(ν) = 0. If E is big enough,

there exists a root of the generalised Hermite polynomial Hm,n(α) with the asymptotic behaviour

1− α = κE−
2
3 + o(E−

2
3 ).

4Remarkably a slightly simpler version of this problem was shown to model the growth-rate distribution of
E. Coli, see [10] by one of the authors.
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Remark 4.9. In the case n = 1, the above description coincides with the well known edge-
asymptotic for roots of the Hermite polynomial [16]. Indeed, in the case n = 1, the only
solution of the no-logarithm condition is β = 0: the equation (4.19) reduces to the standard
Airy equation with potential 2λ− 2κ and u+ is the solution of the Airy equation that vanishes

at λ = 0. Therefore the eigenvalues equal κn = −2−
1
3 εn, n ≥ 1 where εn is the n-th zero of the

Airy function on the imaginary axis.

5 Concluding remarks

All singularities of Painlevé IV rationals can be expressed in terms of zeros of generalised Her-
mite Hm,n and Okamoto polynomials Qm,n. We have characterised those zeros by means of the
inverse monodromy problem for an anharmonic oscillator of degree two. We have shown that
these oscillators in turn characterise three special classes of infinitely sheeted coverings of the
sphere. In the case of generalised Hermite polynomials we have also explicitly computed the
monodromy representation of such coverings by means of line complexes; as a by-product we
obtained the number of real roots. Finally we have computed the asymptotic distribution in the
bulk of zeros of generalised Hermite polynomials in the regime m� 0 and n fixed; we have also
presented some preliminary results about the edge asymptotics.

Many questions about rational solutions of Painlevé IV remain open and we plan to address
some of them by means of the methods developed in the present paper. These include, in
the case of generalised Hermite polynomials, a precise description of zeros in the edge – in
particular the cross-over between the bulk and the edge behaviour described by the large κ
limit of equation (4.20) – and the asymptotic distribution of zeros in the more general regime
r := m/n ∈ (0, 1] fixed and both m,n → ∞. The latter is in principle a straightforward
extension of our results, even though the error analysis presents some new analytical challenges.

The real testing ground of our methods is the analysis of Okamoto polynomials. On the
theoretical side, we have yet to find a combinatorial classification of line complexes of the
functions in the class Fn3 discussed in Section 3. Such a classification would lead, along the lines
of Corollary 3.5, to compute the number of real zeros. We also plan to tackle the asymptotic
analysis of the distribution of zeros of generalised Okamoto polynomials, but at this stage it is
uncertain whether our methods allows to deal with the greater complexity of these polynomials.

A Generalised Hermite and Okamoto polynomials

The generalised Hermite polynomials Hm,n(z), where m,n ∈ N, are recursively defined by

2mHm+1,nHm−1,n = Hm,nH
′′
m,n − (H ′m,n)2 + 2mH2

m,n,

2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n + (H ′m,n)2 + 2nH2

m,n,

with H0,0 = H1,0 = H0,1 = 1 and H1,1 = 2z. Specialising to n = 1, we obtain the classical m-th
Hermite polynomial, that is,

Hm,1(z) = (−1)mez
2 ∂m

∂zm
[
e−z

2]
.

Similarly the generalised Okamoto polynomials Qm,n, where m,n ∈ Z, are defined via the
recursion

Qm+1,nQm−1,n = 9
2

(
Qm,nQ

′′
m,n − (Q′m,n)2

)
+
(
2z2 + 3(2m+ n− 1)

)
Q2
m,n,

Qm,n+1Qm,n−1 = 9
2

(
Qm,nQ

′′
m,n + (Q′m,n)2

)
+
(
2z2 + 3(1−m− 2n)

)
Q2
m,n,
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with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√

2z. The polynomials Qm,0 and Qm,1 with m ∈ Z, were
originally introduced by Okamoto [49], to describe the subcases of (1.7) where θ0 ∈

{
± 1

6 ,±
1
3

}
.

Proposition A.1. For m,n ∈ N, the polynomial Hm,n has only simple roots and none common
with Hm+1,n, Hm,n+1 and Hm−1,n+1. Furthermore Hm,n

(
1
2z
)

is monic of degree mn with integer
coefficients and we have the symmetry

Hm,n(iz) = imnHn,m(z).

For m,n ∈ Z, the polynomial Qm,n has only simple roots and none common with Qm+1,n, Qm,n+1

and Qm−1,n+1. Furthermore Qm,n
(

1√
2
z
)

is monic of degree dm,n = m2 + n2 +mn−m− n with

integer coefficients and we have the symmetries

Qm,n(iz) = idm,nQn,m(z), Qm,n(z) = Q−m−n+1,m(z).

Proof. See Noumi and Yamada [46]. �

B Bäcklund transformations

Okamoto [49] first uncovered that PIV enjoys the action of the affine Weyl group A
(1)
1 by means

of Bäcklund transformations on its solutions, see also Noumi and Yamada [46]. In this study we
only require the including translations, generated by

R1 : ω(1) =
(ω′ + 4θ0)2 + 8(θ∞ − θ0)ω2 − ω2(ω + 2z)2

2ω(ω2 + 2zω − ω′ − 4θ0)
,

R2 : ω(2) =
(ω′ − 4θ0)2 + 8(θ∞ − 1− θ0)ω2 − ω2(ω + 2z)2

2ω(ω2 + 2zω + ω′ − 4θ0)
,

R3 : ω(3) =
(ω′ − 4θ0)2 + 8(θ∞ + θ0)ω2 − ω2(ω + 2z)2

2ω(ω2 + 2zω − ω′ + 4θ0)
,

R4 : ω(4) =
(ω′ + 4θ0)2 + 8(θ∞ − 1 + θ0)ω2 − ω2(ω + 2z)2

2ω(ω2 + 2zω + ω′ + 4θ0)
, (B.1)

where the complex parameters are transformed correspondingly as

θ
(1)
0 = θ0 − 1

2 , θ
(2)
0 = θ0 + 1

2 , θ
(3)
0 = θ0 + 1

2 , θ
(4)
0 = θ0 − 1

2 ,

θ(1)
∞ = θ∞ + 1

2 , θ(2)
∞ = θ∞ − 1

2 , θ(3)
∞ = θ∞ + 1

2 , θ(4)
∞ = θ∞ − 1

2 .

It is these Bäcklund transformations, which can be extended to Schlesinger transformations
of the associated linear system (2.6), as shown by Fokas et al. [24]. Note that the following
identities hold true

R1R2 = I, R3R4 = I, R1R3 = R3R1,

where I denotes the identity.

C WKB Computations

Proof of Lemma 4.4. After the change of variable ν = E−
1
2µ+ α, the integral reads

SA(λ) = E

∫ E−
1
2 λ++α

E−
1
2 λ+α

√
1− ν2 +

ji(1− α2)
1
2

E(ν − α)
− n2 − 1

4E2(ν − α)2
dν,
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where, by equation (4.13), we have E−
1
2λ+ +α = 1+ ji

2(1−α)E
−1 +O(E−2). We introduce a fixed

but arbitrarily small ε > 0 and shift the upper integration limit to get

SA(λ) = E

∫ 1+iE−1+ε

E−
1
2 λ+α

√
1− ν2 +

ji(1− α2)
1
2

E(ν − α)
− n2 − 1

4E2(ν − α)2
dν +O

(
E−

1−3ε
2
)
.

Next, expanding the integrand about E =∞, gives

SA(λ) =

∫ 1+iE−1+ε

E−
1
2 λ+α

(
E
√

1− ν2 + 1
2ji

(1− α2)
1
2

(ν − α)(1− ν2)
1
2

)
dν

+

∫ 1+iE−1+ε

E−
1
2 λ+α

∑
k≥2

E−k+1 ck

(ν − α)k(1− ν2)k−
1
2

dν +O
(
E−

1−3ε
2
)
, (C.1)

where the series
∑
ckw

k has positive radius of convergence r0.

In the first line, discarding again an error O
(
E−

1−3ε
2

)
, the upper integration limit can be

replaced by 1, and the remaining integral can be written explicitly in terms of elementary
functions. Indeed, the integral of the first term of the first line equals

1
4E
(
−2
(
α+ λE−

1
2
)√

1−
(
α+ λE−

1
2

)2 − 2 arcsin
(
α+ λE−

1
2
)

+ π
)
,

which in the limit λ � E−
1
2

+γ yields

1
2E
(
−α
(
1− α2

) 1
2 + arccosα

)
− E

1
2
(
1− α2

) 1
2λ+O

(
E−1+2γ

)
.

The second term of the first line of (C.1) is equal to

1
2ji
(
− log λ+ 1

2 logE + log
[√(

1− α2
)(

1−
(
α+ E−

1
2λ
)2)− α(α+ E−

1
2λ
)

+ 1
])
,

and in the limit λ � E−
1
2

+γ yields

1
2ji
(
− log λ+ logE

1
2 + log 2(1− α2)

)
+O

(
E−1+γ

)
.

To conclude the proof, we show that for λ � E−
1
2

+γ the second line of (C.1) is of order E−γ ,

if ε is sufficiently small. We therefore fix s ∈ C, <s > 0 and let λ = sE−
1
2

+γ (γ ≥ 0).

Since the contribution of the endpoints is different, we split the integration contour in two,

namely
∫ 1+α

2

E−
1
2 λ+α

and
∫ 1+iE−1+ε

1+α
2

.

Along the first sub-contour, after the change of variable ρ = E1−γ(ν − α), the integrand
becomes∫ E1−γ(1−α

2
)

s

∑
k≥2

E−γ(k−1)ckρ
−k(1− (Eγ−1ρ+ α

)2)−k+ 1
2 dρ.

Estimating (1− (Eγ−1ρ+ α)2)−k+ 1
2 with its supremum, the radius of convergence of the series

is easily estimated to be at least Eγ(1−α2)sr0. Therefore, for E large enough, the integrand is
seen to converge uniformly and the dominant contribution is O(E−γ).

Similar considerations, along the second sub-contour, lead to a dominant contribution of

order O(E−
1+ε
2 ). �
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Proof of Lemma 4.6. We prove the lemma for ρ1. An analogue proof is valid for the case ρ−1.

For any potential V , we define the function R(V, λ) = 4V ′′(λ)V (λ)−5V ′(λ)2

V (λ)
5
2

.

By definition ρ1 ≤
∫
` |R(VA, µ)dµ| where the oriented integration contour ` is such that along

it the real part of the phase function, <SA, is not decreasing and tends to +∞
To this aim, we fix some 0 < r < 1−<α and define the following integration contour∫ λr

λ,γS

|R(VA, µ)|dµ+

∫ ∞
λr,γA

|R(VA, µ)|dµ,

where λr is the intercept with real part E
1
2 r of the Stokes line γS defined by the equation

<S(µ) = <S(λ). The second integral in taken along the anti-Stokes line γA, defined by the
equation =S(µ) = =S(λr) and the inequality <S(µ) ≥ <S(λr); see Fig. 8.

We first analyse the integral along the anti-Stokes line γA. By our choice of the endpoint λr,
along γA we have that |µ| ≥ CE

1
2 for some C > 0. We make the change of variable ν = E−

1
2µ

and expand the integrand around E =∞ to get∫ ∞
λr

|R(VA, µ)|dµ = E−1

∫ ∞
E−

1
2 λr

|R(V0, ν)|dν
(
1 +O

(
E−1

))
,

where V0(ν) = ν2 + 2αν − (1 − α2). Since E−
1
2λr has a well-defined limit different from zero

and R(V0, ν) is integrable at ∞, we conclude that the integral along γA is O(E−1).
We tackle now the contribution from the integration along the Stokes line. We split the

integration contour in two: We fix r′ > 0 and write∫ λ′r

λ,γS

|R(VI , µ)|dµ+

∫ λ′r

λ1,γS

|R(VI , µ)|dµ,

where λ′r is the intercept with real part E
1
6 r′ of the Stokes line γS .

A detailed balance analysis shows that for any fixed positive s, s′, in the domain sE−
1
2

+γ ≤
|λ| ≤ E

1
6 s′, |R(VA, E)| ≤ CE−1|λ|−3 for E large enough (depending on s, s′). This means that

that the first integral is O(E−2γ).

Similarly, for any fixed positive t, t′, in the domain E
1
6 t ≤ |<λ| ≤ E

1
2 t′, |R(VA, E)| ≤

C ′|λ|E−
3
2 for E large enough (depending on r, r′). This means that the second integral

is O(E−1). �
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[26] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter
Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.

https://doi.org/10.1088/0305-4470/31/14/001
https://arxiv.org/abs/physics/9801007
https://doi.org/10.1093/imrn/rnu239
https://arxiv.org/abs/1401.1408
https://doi.org/10.24033/asens.661
https://arxiv.org/abs/1706.09005
https://doi.org/10.1088/0951-7715/27/10/2489
https://arxiv.org/abs/1310.2276
https://doi.org/10.1088/0951-7715/28/6/1539
https://arxiv.org/abs/1406.0826
https://doi.org/10.1063/1.1603958
https://doi.org/10.1215/00127094-2429589
https://arxiv.org/abs/1209.1009
https://doi.org/10.1088/1742-5468/aa4e8f
https://arxiv.org/abs/1606.09048
https://doi.org/10.4171/022-1/7
https://arxiv.org/abs/math-ph/0603038
https://arxiv.org/abs/math.AG/9803107
https://doi.org/10.1007/PL00005790
https://doi.org/10.1007/PL00005790
https://arxiv.org/abs/math.AG/9806056
https://doi.org/10.1090/conm/355/06453
https://doi.org/10.1007/s00220-008-0663-6
https://arxiv.org/abs/0802.1461
https://doi.org/10.1007/978-3-642-58016-1
https://doi.org/10.1016/j.physd.2012.08.008
https://arxiv.org/abs/1005.2695
https://doi.org/10.1063/1.3068414
https://arxiv.org/abs/0804.2859
https://doi.org/10.1090/surv/128
https://doi.org/10.1007/BF02102066
https://doi.org/10.1016/0167-2789(88)90021-8
https://doi.org/10.1515/9783110198096
https://doi.org/10.1515/9783110198096


48 D. Masoero and P. Roffelsen

[27] Its A.R., Novokshenov V.Yu., The isomonodromic deformation method in the theory of Painlevé equations,
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Japan. J. Math. (N.S.) 5 (1979), 1–79.
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