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Abstract

We establish and develop a bijection between certain crystals bases (Kashiwara crystals)
and the Coulomb branch of three-dimensional N = 4 gauge theories. The result holds for
simply-laced, non-simply laced and affine quivers. Two equivalent derivations are given in
the non-simply laced case, either by application of the axiomatic rules or by folding a simply-
laced quiver. We also study the effect of turning on real masses and the ensuing simplification
of the crystal. We present a multitude of explicit examples of the equivalence. Finally, we
put forward a correspondence between infinite crystals and Hilbert spaces of theories with
isolated vacua.
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1 Introduction

Quantum field theories with supersymmetry have been a staple of research in fundamental
Physics for more than half a century. The interest in their study has surpassed the already
formidable framework of attempting to understand the physical world, leading to very central
discoveries in Mathematics. There is an extremely rich body of work on this remarkable interplay
between Physics and Mathematics, but we shall focus on a specific corner of that interdisciplinary
endeavor, the one dedicated to the study of moduli spaces of vacua of supersymmetric quiver
gauge theories.

One far-reaching lesson from supersymmetric quantum field theories is that a wealth of
field-theoretical questions can be rephrased solely in terms of algebraic varieties. A pivotal role
in this program is played by quivers, combinatorial objects that encode information of both
supersymmetric field theories [1] and algebraic varieties [2]. Throughout this work, a quiver will
always be assumed to be modelled after a symmetrizable Kac–Moody algebra [3].

The central objects of study in the present work are three-dimensional quiver gauge theories
with eight supercharges [4], that is to say, with N = 4 supersymmetry. Additionally, we restrict
our attention to theories that are good in the Gaiotto–Witten classification [5].

Typically, quiver theories with eight supercharges have moduli spaces of vacua containing
two distinguished branches, called Coulomb and Higgs branch. As reviewed in Section 2.2,
the Higgs branch is hyperKähler [6], regardless of the dimension of the spacetime in which the
theory lives. Conversely, the nature of the Coulomb branch changes as the spacetime dimension
is varied.

Three-dimensional N = 4 Coulomb branches are hyperKähler varieties [4], but their most
general and comprehensive characterization remains elusive. The systematic study of these
algebraic varieties building on their field-theoretical realization has been initiated in [7].

Alternatively, the algebro-geometric properties of the Coulomb branch can be accessed com-
puting its Hilbert series from the gauge theory data. The monopole formula [8] yields the
Coulomb branch Hilbert series of any three-dimensional N = 4 good theory in the form of a
combinatorial expression. Efforts to interpret the monopole formula as the Poincaré polyno-
mial of a cohomology led to the successful definition and study of Coulomb branches from a
mathematical standpoint [9–11] (related work includes but is not limited to [12–20]). One of
the main outcomes of this line of research is that three-dimensional N = 4 Coulomb branches
are slices in the affine Grassmannian [11]. The quantization of their coordinate rings then fol-
lows as a byproduct [7, 10], with the quantized Coulomb branch amenable to be analyzed using
localization techniques [21, 22] (see also [23] for a complementary, bootstrap-oriented analysis).

A convenient way to produce three-dimensional N = 4 quiver gauge theories relies on the
Hanany–Witten brane setups in type IIB string theory [24]. The connection among Hanany–
Witten brane systems, the associated quiver gauge theories and the affine Grassmannian has
been investigated in [25].

Quivers appear in the study of quantum groups as well. Lusztig used them to construct
bases, known as canonical bases, for the quantization of the associated enveloping algebras
[26–28]. Parallel work of Kashiwara [29–31] showed the existence of crystal bases on the same
quantized enveloping algebras. The bases of Lusztig and Kashiwara are equivalent [32].

An isomorphism between slices in the affine Grassmannian and Kashiwara crystals was es-
tablished by Braverman and Gaitsgory [33]. We will rederive in this work this statement from
the physics of three-dimensional N = 4 Coulomb branches. Conversely, such a mathematically
rigorous result provides us with yet another tool to understand the Coulomb branches, and un-
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covers an additional characterization of these multi-faceted symplectic varieties, as schematically
drawn in Figure 1.

3d N = 4

Coulomb branch

Quiver variety
Slice in the

affine Grassmannian

Kashiwara crystal

Figure 1. Three realizations of 3d N = 4 Coulomb branches.

More specifically, in this work we establish a bijection between certain Kashiwara crystals
and three-dimensional N = 4 Coulomb branches. We give a direct and explicit derivation based
on quantum field theory as well as on Hanany–Witten brane setups [24]. The result is rigorously
proved in two steps:

Kashiwara crystal
[33]−−−−−−→ Slice in the affine Grassmannian

[11]−−−−−−→ Coulomb branch.

We emphasize that the correspondence is not limited to type A quivers, but holds for finite, both
simply and non-simply laced, and affine quivers. In particular, we have two derivations in the
non-simply laced case: by application of the axiomatic rules or by folding a parent simply-laced
quiver. The two procedures are shown to give the same output. In addition, we study the effect
of turning on real masses, showing how the crystal simplifies for generic mass deformations, and
how it changes discontinuously at positive-codimensional loci in parameter space.

In our use of Kashiwara crystals, we have relied considerably on the recent presentation
by Bump and Schilling [34] where, based not only on the results of Kashiwara, but also on
the later work by Stembridge [35], an axiomatic combinatorial approach to the construction
of crystal bases associated to quantum-deformed enveloping algebras of finite-dimensional Lie
algebras is developed. This approach can be of significant advantage when there is already a
background or familiarity with the combinatorics of Young tableaux, such as in the construction
of the irreducible representations of the symmetric and general linear groups, by means of such
tableaux.

Finally, we stress that a considerable amount of the material in this paper is already known,
certainly to experts. Indeed, various of our results may be derived by chains of known relation-
ships in algebraic geometry and geometric representation theory. One of the goals of the present
work is to reorganize the salient material in the different areas involved in such a way as to
hopefully illuminate further on the logic of the subject and to make it accessible to a different
audience, while providing an explicit and algorithmic presentation, which makes the Coulomb
branch physics transparent and is easily implemented in a computer algebra system such as
sage [36].

A summary of the topics encompassed by our analysis, with the web of their interrelations,
is depicted in Figure 2. The main novelties introduced by our work are highlighted in red.

The paper is organized as follows. Section 2 gives a brief introduction to three-dimensional
N = 4 theories and their Coulomb branches. After that, we present our main result in Section
3. In Section 3.1 we axiomatically introduce a family of Kashiwara crystals and state their
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3d N = 4

Coulomb branches

Phases of Hanany–Witten

brane setups

Slices in the

affine Grassmannian

Kashiwara

crystals

[9–11]

[24]

[25]

[33]

Figure 2. Summary of the topics covered in the body of the paper, and their web of relations.

equivalence with Coulomb branches. Then, in Sections 3.2-3.3 the equivalence is derived directly
from the Coulomb branch physics and from brane setups, respectively. Section 3.4 contains
several examples that illustrate our claims in type A. The notion of resolved crystal is introduced
in Section 4, and therein exploited to study the effect of mass deformations. We then show
explicitly how the previous general results apply to type D quivers in Section 5.1, to non-simply
laced quivers in Section 5.2, and to affine type A quivers in Section 6.

In Section 7 we discuss a different class of crystals, which we relate to the Hilbert spaces of
theories with isolated vacua, through their Coulomb branch Verma module structure [37]. We
conclude in Section 8 with an outlook on potential avenues for future research, mostly aimed
at expanding upon Section 7. The text is complemented with two appendices. Appendix A
substantiates the results of the main text with an extensive list of detailed examples. Appendix
B briefly discusses an inductive limit on the crystals.

2 3d N = 4 Coulomb branches and the affine Grassmannian

The purpose of this introductory section is to present our notation and conventions. We begin
in Section 2.1 with basic mathematical definitions that will be needed in the rest of the work.
Section 2.2 contains a lightning overview of the moduli spaces of vacua of 3d N = 4 theories
[4, 5], while Section 2.3 reviews the parameter spaces of interest.

2.1 Setup and notation

2.1.1 Groups and lattices

Let G be a complex, reductive, algebraic group of rank r, and let g be the corresponding Lie
algebra. g will be assumed to be a symmetrizable Kac–Moody algebra [3]. In most cases it will
be taken to be a finite classical or affine type A Lie algebra. The Langlands dual group to G is
LG and the corresponding Lie algebra is denoted by Lg. For example, if G = SL(r + 1), then
LG = PSL(r + 1) and Lg ∼= g = su(r + 1).

Let TG be the maximal torus of G. The weight lattice of G is Λw = Hom(TG,C∗) and
coweight lattice of G is denoted by Λ∨w [38]. The weight and coweight lattices of LG are Λ∨w and
Λw, respectively [38]. Besides, Φ will denote the set of roots of G, with 4 being the subset of
simple positive roots. Langlands duality exchanges roots and coroots [38].
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2.1.2 The affine Grassmannian

Let O = C[[t]] denote the ring of Taylor series in t and K = C((t)) the field of Laurent series
in t. That is, K contains functions of the form

∑
k∈Z ckt

k with arbitrarily but finitely many
ck 6= 0 with k ≤ 0. For a matrix group G, the notation G(K ) (resp. G(O)) indicates the group
of matrices with entries from K (resp. from O) taking values in G.

Definition 1. The affine Grassmannian of G is

GrG = G(K )/G(O).

It consists of π1(G) many components.

2.1.3 Quivers

Let Q be a framed quiver and denote by Q◦ ⊂ Q the naturally associated unframed quiver.
We adopt the standard notation for theories with eight supercharges, in which unoriented edges
mean pairs of complex conjugate edges.

The quiver Q◦ will be taken to be shaped like the Dynkin diagram of a symmetrizable Kac–
Moody algebra g. We denote by r = rk(g) the number of nodes of Q◦, and we will use an index
j = 1, . . . , r running over them.

With this in mind, Q is characterized by a generalized Dynkin diagram together with two
arrays of integers,

N = (N1, . . . , Nr), w = (w1, . . . ,wr) (2.1)

specifying the ranks of gauge and flavour nodes.1

Definition 2. A quiver Q is called balanced if [5]

2Nj −
∑

j′:(j→j′)∈Edges(Q◦)

Nj′ = wj , ∀j ∈ Nodes(Q◦) (2.2)

with the sum running over the nodes j′ ∈ Nodes(Q◦) that are connected to the node j. For A(g)
the generalized Cartan matrix of g, relation (2.2) is written A(g)N = w.

For more on quivers and quiver varieties, we refer to [2, 39].

2.2 Moduli spaces of vacua of 3d N = 4 theories

A 3d N = 4 supersymmetric gauge theory is specified by two pieces of data: a gauge group G
and a (generically, reducible) quaternionic representation R of it. These choices are conveniently
encoded in a framed quiver Q. The unframed quiver Q◦ ⊂ Q captures the gauge group, while
the framing captures the flavour symmetry. We will always assume that the gauge group G is
a product of unitary groups,

G =
∏

j∈Nodes(Q◦)

U(Nj) . (2.3)

The field content of the gauge theory consists of a vector multiplet, in the adjoint repre-
sentation of the Lie algebra of G, and a hypermultiplet determined by the representation R.
The R-symmetry is SU(2)C × SU(2)H . Deformations of the theory are parametrized by SU(2)C
triplets of masses ~m and by SU(2)H triplets of Fayet–Iliopoulos (FI) parameters ~ζ.

1In the mathematical literature, (N1, . . . , Nr) is more often denoted (v1, . . . , vr).
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These theories admit intricate moduli spaces of vacua, parametrizing flat directions for
scalar zero-modes in the vector and hypermultiplet. The moduli spaces have two distinguished
branches.

• The Coulomb branch, C. It is a hyperKähler manifold with SU(2)C action that rotates
the triplet of complex structures. For ADE quivers, C is a slice in the corresponding affine
Grassmannian [7, 11, 25]. It is a holomorphic-symplectic singularity [10, 19] parametrized
by dressed magnetic monopoles [40].

• The Higgs branch, H, along which the gauge group is completely broken. It is a singular
hyperKähler quotient [6] with SU(2)H rotating the three complex structures. Besides, it is
protected against quantum corrections. It follows from early mathematical works [41, 42]
(and also from [43]) that, for a wealth of ADE quivers, H [Q] is the closure of a nilpotent
orbit of the Lie algebra g into which Q◦ is shaped [5]. The singularity structure of closures
of nilpotent orbits is then reinterpreted as the phase diagram of the gauge theory, a claim
tested and successfully reproduced in a vast class of examples [44–48].

Additionally, the moduli spaces of vacua include the so-called mixed branches, that intersect C
and H non-trivially at singular loci of the two branches. Physically, a mixed branch corresponds
to a partial Higgsing.

As emphasized in [49, 50], the singularity structure of Higgs and Coulomb branches is de-
scribed by the symplectic foliation of a symplectic singularity [51, 52]. Geometrically, real masses
partially resolve the Coulomb branch singularity, because hypermultiplet modes become mass-
less at separated points on C, rendering the singularity less severe. For generic masses, the Higgs
branch is lifted.

Three-dimensional N = 4 theories enjoy mirror symmetry [53], an IR duality that relates
certain pairs of quivers Q,Q∨ according to

H [Q] ∼= C
[
Q∨
]
, C [Q] ∼= H

[
Q∨
]
,

(
~m, ~ζ

)
=
(
~ζ∨, ~m∨

)
.

2.3 Parameter space

Let GF be the flavour symmetry group. Our choice (2.3) of gauge group implies that GF =
S [U(w1)×U(w2)× · · · ×U(wr)], and we let

n =
r∑
j=1

wj

in the above notation. In what follows, we will only turn on real masses.
The parameter space M (n) of real masses is stratified:

M (n) =

m = (m1, . . . ,mn) ∈ Rn : m1 ≥ m2 ≥ · · · ≥ mn and
n∑
j=1

mj = 0

 ≡ ⊔
λ∈Yn

M
(n)
λ ,

where Yn denotes the set of all partitions of n. M
(n)
λ is the parameter space with exactly λ1

hypers of equal mass m1 = · · · = mλ1 , exactly λ2 hypers of equal mass mλ1+1 = · · · = mλ1+λ2

(but mλ1 6= mλ1+1), and so on.
The singularity of C is partly resolved in this setup, with the massless case corresponding to

λ = (n), whereas generic masses correspond to λ = (1n). We denote the corresponding partial
resolution as

Xλ[Q]→ C[Q], if m ∈M
(n)
λ . (2.4)
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To lighten the notation, we will often omit the dependence on Q. Furthermore, we will denote

by X = X (m) the piecewise-constant function that gives the variety Xλ when m ∈M
(n)
λ .

A given λ breaks the flavour group GF to a block-diagonal subgroup, with the flavour bundle
splitting accordingly. In addition, whenever λ has s ∈ N rows of equal length there is a discrete
symmetry factor Ss permuting the groups of hypermultiplets.

Notice that M (n) ∼= H2(C[Q],R) is the restriction of the Cartan subalgebra tF of the flavour
symmetry algebra to the principal Weyl chamber, and λ 6= (1n) specifies a wall of such chamber.

3 Coulomb branches are Kashiwara crystals

In this section we introduce Kashiwara crystals [29–31] and present their relationship with C.
Crystal bases appear in the crystal limit q → 0 of the representation theory of quantum groups
Uq(

Lg) [31, 54]. We will adopt their combinatorial definition [34].

Main result 1. C is described, as a symplectic singularity, by a Kashiwara crystal C.

Before delving into the details of this correspondence, we ought to emphasize that Result 1
is not genuinely new. Let us sketch results in the literature that overlap with ours.

• The connection between slices in the affine Grassmannian and Kashiwara crystals was
already analyzed in [33]. Then, our first result follows from [33] together with the statement
that C[Q] corresponds to a slice in the affine Grassmannian [11]. Nevertheless, our aim is
to make the connection with field theory as transparent as possible. The approach of [33]
and the one in the present work are compared in Section 3.1.

• A class of crystals to be discussed in Section 7 (and differing from the ones discussed in
the rest of the text) admits a geometric construction hinged on quiver varieties [55].

• There exists a triangle of isomorphisms [56]

Nakajima quiver variety

Slice in the affine Grassmannian Closure of nilpotent orbit

∼=
∼=

∼=

As argued by Dranowski [57], one can label strata of nilpotent orbit closures by Young
tableaux, and then track the images of the tableaux across the isomorphisms. This mecha-
nism underpins a crystal structure for bases in each vertex of the triangle. The presentation
in Section 7 is akin to the work [57], and slightly overlaps with it, as elucidated in due
course.

Underlying these many facets of the bond between quivers and crystals is the observation that
quiver varieties encode the structure of quantum groups and their canonical bases [28], together
with the equivalence between Lusztig’s canonical bases and Kashiwara’s crystal bases [32, 57].

Our goal is to give an explicit, combinatorial construction that makes manifest the relation
among crystals, Coulomb branches, brane configurations and the affine Grassmannian, adding
one more layer to the analysis of [25]. In this section we mostly focus on type A quivers, although
we keep the definitions general for later convenience.

3.1 Crystals from axioms and Coulomb branches

We now define the Kashiwara crystals, closely following the monograph [34], up to few mild
variations that will make the correspondence with Coulomb branches more manifest. Then, we
construct crystals that capture the geometry of Coulomb branches.

6



3.1.1 Definition of Kashiwara crystals

Fix n ∈ N and let σ = (σ1, σ2, . . . , σ`) be a partition of n, identified with the Young diagram
whose jth row consists of σj boxes. Besides, fix an alphabet [r] ≡ {0, 1, 2, . . . , r, r + 1} (note the
inclusion of 0 and r+ 1). A semi-standard Young tableau T of shape σ is a filling of the Young
diagram σ with letters from the alphabet [r] such that (i) each row is non-decreasing from left
to right and (ii) each column is strictly increasing from top to bottom. Moreover, there exists a
weight function wt on tableaux, which is defined as

wt(T ) = (w1, . . . ,wn) , wi = # of times the letter i appears in T ,

and takes values in a certain weight lattice Λ to be identified below.

Definition 3. Fix a root system Φ and a weight lattice Λw. Denote by j the index running over
the index set of Φ. A Kashiwara crystal is a non-empty collection Cσ of semi-standard Young
tableaux of shape σ together with maps

ej , fj : Cσ → Cσ t {0}
εj , ϕj : Cσ → Z t {−∞}

wt : Cσ → Λw

satisfying the following conditions:

(i) ej(T
′) = T ⇔ fj(T ) = T ′ for any two T, T ′ ∈ Cσ. If this holds, then

wt(T ) = wt(T ′) + αj

and εj(T ) = εj(T
′)− 1, ϕj(T ) = ϕj(T

′)− 1.

(ii) ϕj(T ) = εj(T ) + (wt(T ), αj) for all T ∈ Cσ.

The operators ej , fj are called Kashiwara operators.

In what follows we will only be interested in the so-called normal crystals [34], that satisfy

εj(T ) = max
{
k : ekj (T ) 6= 0

}
, ϕj(T ) = max

{
k : fkj (T ) 6= 0

}
.

Thus, we henceforth neglect the maps εj , ϕj as they are uniquely fixed by the rest of the data.

Definition 4. Let µ ∈ Λw be a highest weight. A Kashiwara crystal C is called a highest weight
crystal of highest weight µ if there exists a tableaux Tµ ∈ C such that (i) wt(Tµ) = µ, (ii)
ej(Tµ) = 0 ∀j and (iii) every T ′ ∈ C is reached acting on Tµ with some sequence of Kashiwara
operators fj . Besides, we will call Tµ the highest weight tableaux of C.

If C is a normal and highest weight crystal of weight µ, then necessarily µ is a dominant
weight [33, 34].

3.1.2 Crystals from quivers

Now that we have set the stage, we associate a Kashiwara crystal C [Q] to any framed quiver Q.

Algorithm 1. Let Q be a framed quiver shaped like the Dynkin diagram of g, with gauge and
flavour nodes specified by N = (N1, . . . , Nr) and w = (w1, . . . ,wr), respectively. Associate a
Kashiwara crystal C[Q] to it as follows.
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1. C[Q] consists of tableaux shaped as the single-row partition (n) of n =
∑r

j=1 wj .

2. The alphabet is [r].

3. The Kashiwara operators are built from the root system Φ∨ and the weight lattice Λ∨w of LG.

4. C[Q] is the highest weight normal crystal of highest weight w.

5. Amputate the crystal after Nj transitions involving the letter j have been performed, ∀j =
1, . . . , r. If Q is balanced, this step has no effect.

Notice the appearance of Langlands duality. On the geometric side, this aspect was discussed
in [33, 58, 59]. The underlying physical reason is that Coulomb branches are moduli spaces of
magnetic objects [40, 8].

As a further remark, we observe that, acting on the highest weight tableaux with the simple
roots α∨1 , α

∨
r of LG will give rise to the letters 0, r+1. These are not accounted for by the weight

function wt, since they do not contribute to form a LG-weight.
At this point, we are ready to reformulate in a rigorous manner our main result.

Main result 2 (Precise statement of Result 1). Let Q be a quiver shaped as the generalized
Dynkin diagram of a symmetrizable Kac–Moody algebra g. Denote by G the reductive algebraic
group associated to g. Let C[Q] be the Coulomb branch of the associated 3d N = 4 gauge theory
and C[Q] the Kashiwara crystal yielded by Algorithm 1. Then C[Q] ∼= C[Q] is an isomorphism of
singular symplectic varieties.

As mentioned above, a mathematical proof of this statement can be given, combining [33]
(and subsequent works) with the recent results on the mathematical formulation of 3d N = 4
Coulomb branches [10, 11, 17]. In summary, we are simply giving a different presentation of the
crystals in [33], which describe GrLG slices. The latter, in turn, capture C[Q]. We do not give
further details, since this would not add to the existing literature. Instead, our aim is to present
our algorithmic construction in a variety of examples, making the physics more transparent.

The starting point of Algorithm 1 is the highest weight tableau

1 1 ··· 1 2 ··· 2 ··· r ··· r︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
wr

of weight wt = (w1, . . . ,wr). Then we start changing wt either with a simple root α∨j ∈ 4∨

of LG (i.e. a coroot of G) or with a combination
∑

j ajα
∨
j ∈ Φ∨, (a1, . . . , ar) ∈ Nr. However,

each such combination can be reached in various steps, each step being a change of wt by a
simple root or by a combination

∑k+p
j=k α

∨
j for some k, k + p ∈ {1, . . . , r}. Therefore we see

that, by construction, Kashiwara operators are in correspondence with transverse slices to the
symplectic singularity, either being a du Val singularity Ap or the closure of a minimal nilpotent
orbit ap, bp, cp, dp, e6,7,8.2

3.1.3 A convenient bijection

For a more convenient visualization, as well as to insist on the analogy with quivers, we will
adopt a different presentation of tableaux, in which we replace a string of wj boxes filled with

2We only consider unitary gauge groups (2.3), thus we never get du Val singularities other than type A.
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the letter j by a single box labelled with wj ≡ wj + 1. In other words, we draw the weight
wt(T ), with entries shifted by 1, instead of T itself. With this in mind, we get the bijection

w1⊗w2⊗ ··· ⊗wr 1:1←→ 1 1 ··· 1 2 ··· 2 ··· r ··· r︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
wr (3.1)

together with the mapping of the Kashiwara operators ej , fj on the right into operators that
have the same action, but change the filling of the tableau rather than the weight. Notice that,
under the map (3.1), the roles of r and n are exchanged.

For instance, take the A1 quiver with w1 = n flavours and N = bn2 c, so that it is either
balanced, for n even, or minimally unbalanced, for n odd. The corresponding crystals are:

n even: n odd:

n+1

n−1

...

3

1

n−1

n−3

3

1

n+1

n−1

...

2

n−1

n−3

2

(3.2)

which reproduce the π1(PSL(2)) = 2 components of GrPSL(2). In this way, the coweight of G
associated to each component is directly read off from the content of the tableau.

As another warm-up example, consider the A2 quiver U(2)×U(2) with two hypermultiplets

at each node. The corresponding crystal C

[
2
�− 2◦ − 2◦ −

2
�

]
is

3 ⊗ 3

4 ⊗ 1 1 ⊗ 4

2 ⊗ 2

1 ⊗ 1

A1 A1

A2 A2

a2

1 1 2 2

1 1 1 3 0 2 2 2

0 1 2 3

0 0 3 3

←→

←→

←→

←→

(3.1)

which agrees with the slice in GrPSL(3) for the given quiver.

3.2 Crystals from quiver subtraction

A useful way to visualize leaves and slices in the affine Grassmannian is quiver subtraction [60].
The idea is roughly as follows. Starting with the quiver Q, minimal transitions correspond

9



to identify a “minimal” sub-quiver of Q and to subtract it, so producing a new quiver whose
Coulomb branch is a lower-dimensional slice in GrLG.

The rigorous statement underneath the quiver subtraction is that slices in the affine Grass-
mannian are stratified and each stratum is a quiver variety [56].

In the Kashiwara crystal setting, to each quiver Q we associate the highest weight tableau
T in the crystal C[Q] and, if a quiver Q′ is one of the possible outputs of subtracting a minimal
quiver to Q, the corresponding highest weight tableau T ′ descends from T acting with a suitable
Kashiwara operator. The consistency of this procedure follows immediately from Algorithm 1.
In turn, this allows a direct and visual check of all our results against those obtained via quiver
subtraction.

Main result 3. Consider a quiver Q and all its descendant via quiver subtraction. There is
a one-to-one correspondence between tableaux T ∈ C [Q] and descendant quivers of Q. Besides,
transitions T → T ′ in C [Q] are in one-to-one correspondence with quivers that describe trans-
verse slices to the singular loci in C [Q].

Examples are provided below.

3.3 Crystals from branes

A convenient way to describe 3dN = 4 theories on their Coulomb branches is via an arrangement
of D3 branes suspended between NS5 branes in type IIB string theory [24]. Consider the following
setup [24]:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

DS3 • • • •
NS5 • • • • • •
D5 • • • • • •

In the graphical representation of the Hanany–Witten configurations we adopt the color code of
[50, 25]: NS5 branes are depicted in red, D5 branes in blue and D3 branes in black. We limit
ourselves to discuss type A quivers in type IIB string theory, but other classical types could be
included.

The construction of C as given in Algorithm 1 can be recast in an algorithm for the brane
arrangements. In turn, from any given phase of the brane configuration we read off a tableau,
and we connect any two tableaux that are related through a phase transition of the brane system
(called a Kraft–Procesi transition in [45]).

Algorithm 2. Consider an arrangement of r + 1 NS5 branes, with wj D5 branes in the jth

interval between NS5 branes and Nj D3 branes suspended between the jth and (j + 1)th NS5
brane. To such configuration we associate the highest weight tableau T of shape (n) and wt(T ) =
(w1, . . . ,wr), and apply (3.1):

w1︷ ︸︸ ︷
• • · · · • •

w2︷ ︸︸ ︷
• • · · · • •

wr−1︷ ︸︸ ︷
• • · · · • •

wr︷ ︸︸ ︷
• • · · · • •· · ·

w1 w2 · · · wr−1 wr⊗ ⊗ ⊗ ⊗

10



where wj ≡ wj + 1. Then, construct a crystal C by connecting any two tableaux obtained from
brane configurations that are related by one of the following moves:

wj−1︷ ︸︸ ︷
• • · · · •

wj︷ ︸︸ ︷
• • · · · • •

wj+1︷ ︸︸ ︷
• · · · • • · · ·· · ·

wj−1+1︷ ︸︸ ︷
• • · · · • •

wj−2︷ ︸︸ ︷
• · · · •

wj+1+1︷ ︸︸ ︷
• • · · · • • · · ·· · ·

··· ⊗ wj−1 ⊗ wj ⊗ wj+1 ⊗ ···

··· ⊗
wj−1

+1 ⊗
wj
−2 ⊗

wj+1
+1 ⊗ ···

Awj−2

for the Ap, and for the ap

• p−1 NS5

without D5
•

· · ·· · ·

p−1 NS5

without D5 · · ·· · ·

··· ⊗ 2 ⊗

p− 2 boxes︷︸︸︷
· · · ⊗ 2 ⊗ ···

··· ⊗ 1 ⊗ · · ·︸︷︷︸
p− 2 boxes

⊗ 1 ⊗ ···

ap

Notice that we always perform a pair of Hanany–Witten transitions

• • ••

after a phase (or Kraft–Procesi) transition, and refer to this combined move as a transition.
Besides, we point out that the letters in the alphabet [r] are associated with intervals between

two consecutive NS5 branes, including from the leftmost NS5 to −∞, labelled by the letter 0,
and from the rightmost NS5 to +∞, labelled by the letter r + 1. This simple observation is
further discussed and utilized in Appendix B.

3.4 Type A examples

In this subsection we work out a few explicit examples of Ar quivers with unitary gauge nodes.
We assume that the gauge ranks are large enough to admit all transitions. Otherwise, one simply
amputates from C all legs after Nj operations have been performed on the jth box.

In the examples, we juxtapose C with its Hasse diagram, that we have computed from quiver
subtraction. Dots in the Hasse diagram represent symplectic leaves, with the quaternionic
dimension explicitly written.

11



3.4.1 A2,w = (5, 2)

C

[
5
�− 4◦ − 3◦ −

2
�

]
is

6 ⊗ 3

4 ⊗ 4 7 ⊗ 1

2 ⊗ 5 5 ⊗ 2

3 ⊗ 3

1 ⊗ 4 4 ⊗ 1

2 ⊗ 2

1 ⊗ 1

A4 A1

A5A2 A2

A2 A2

A1 A1

A2 A2

a2

•

• •

• •

•

• •

•

•

7

6 6

5 5

4

3 3

2

0

A4 A1

A5A2
A2

A2 A2

A1 A1

A2 A2

a2

(3.3)

For clarity, in this first example we show the full PSL(3) crystal isomorphic to (3.3):

1 1 1 1 1 2 2

1 1 1 1 1 1 31 1 1 2 2 2 3

1 2 2 2 2 3 3 1 1 1 1 2 3 3

1 1 2 2 3 3 3

2 2 2 3 3 3 3 1 1 1 3 3 3 3

1 2 3 3 3 3 3

3 3 3 3 3 3 3

wt=(5,3)

wt=(3,3) wt=(6,0)

wt=(1,4) wt=(4,1)

wt=(2,2)

wt=(0,3) wt=(3,0)

wt=(1,1)

wt=(0,0)

A4 A1

A5A2 A2

A2 A2

A1 A1

A2 A2

a2

12



The outcome matches C
[

5
�− 4◦ − 3◦ −

2
�

]
as computed both via subsequent phases of brane

configurations:

• • • • • ••

• • • • • • • • • • ••

• • • •• • • •• •

•• ••

• • • • • •

• •

and quiver subtraction:

5
�− 4◦ − 3◦ −

2
�

3
�− 3◦ − 3◦ −

3
�

6
�− 4◦ − 2◦

1
�− 2◦ − 3◦ −

4
�

4
�− 3◦ − 2◦ −

1
�

2
�− 2◦ − 2◦ −

2
�

1◦ − 2◦ −
3
�

3
�− 2◦ − 1◦

1
�− 1◦ − 1◦ −

1
�

∅

A4 A1

A5A2 A2

A2 A2

A1 A1

A2 A2

a2

13



3.4.2 A5, T [SU(6)]

The next example is a T [SU(n)] theory [5] with n = 6, described by the A5 quiver

1◦ − 2◦ − 3◦ − 4◦ − 5◦ −
6
�.

Notice that we can realize C [T [SU(n)]] as a slice in the Coulomb branch C [Q] of a higher rank

quiver Q. The Coulomb branch of the mirror quiver
6
�− 5◦ − 4◦ − 3◦ − 2◦ − 1◦ will be realized as a

different slice of C [Q]. Of course, the two slices are isomorphic.

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 7

1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 5

1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 3

1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 4 1 ⊗ 1 ⊗ 1 ⊗ 4 ⊗ 1

1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 2

1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 3 1 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 1

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

A5

A3

A1 A1

A2 A2

a2 a2

A1 A1

a3

a5

•

•

•

• •

•

• •

•

•

•

15

14

13

12 12

11

9 9

8

5

0

A5

A3

A1 A1

A2 A2

a2 a2

A1 A1

a3

a5
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The brane configurations read off from C[T [SU(6)]] agree with the phases of the Hanany–Witten
setup for C[T [SU(6)]]:

• • • • ••

• • •••

••••

• • ••

• • •

•••

•••

• • •

••

••
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4 Mass deformation and resolved crystals

At this point we turn on real masses for the hypermultiplets and develop the theory of Kashiwara
crystals for the resulting partial resolution of C.

Recall from Section 2.3 our description of the parameter space M (n) =
⊔
λ M

(n)
λ , where

|λ| = n, together with the definitions of Xλ and X from (2.4). Fix λ = (λ1, λ2, . . . , λ`) and let
wj(λk) denote the number of hypermultiplets at the jth node that belong to the group of λk
equal masses. The highest weight tableau T , of shape (n) and weight wt(T ) = (w1, . . . ,wr),
splits into the direct sum T (λ1)⊕T (λ2)⊕· · ·⊕T (λ`), with each T (λk) of shape (λk) and weight
wt(T (λk)) = (w1(λk), . . . ,wr(λk)). We stress that the weight is not additive under ⊕.

In this way we obtain a crystal Xλ which is the disjoint union of ` sub-crystals. We borrow
the nomenclature from resolution of singularities and refer to Xλ as (partially) resolved crystal.3

As for the resolution X → C, we will denote by X the function on M (n) that gives Xλ when

m ∈M
(n)
λ .

Main result 4. Turning on real masses, the partial resolution X → C is described, as a sym-
plectic singularity, by a partially resolved crystal X, which is piecewise constant on the mass
parameter space and jumps at positive-codimensional loci.

The partition λ that labels the stratum of the parameter space, and the corresponding phase
diagram, can equivalently be read off from the Hanany–Witten setup. For instance, in U(2)
with 5 flavours we take three sample cases λ = (5), λ = (3, 2), λ = (3, 12) and find:

• • • • • • • •
• •

• • •
•
•

λ=(5) λ=(3,2) λ=(3,12)

The boxes are immaterial, but we have drawn them for the analogy with Young tableaux.

4.1 Mass-deformed type A examples

We lay out some examples of the crystal resolution to support the validity of Result 4. Further
detailed examples are worked out in Appendix A. As in Section 3, we will adopt the convenient
isomorphic presentation (3.1).

4.1.1 U(2) with four flavours

Let us start with a simple example to clarify the procedure: U(2) with n = 4 flavours. The
parameter space decomposes as

M (4) = M
(4)
(14)
tM

(4)
(2,12)

tM
(4)
(22)
tM

(4)
(3,1) tM

(4)
(4) .

We now schematically represent the structure of Xλ
[

2◦ −
4
�

]
along each stratum M

(4)
λ . We draw

the brane setup on the left, in the middle the resolved crystal Xλ and on the right the Hasse
diagram of X with the quaternionic dimension of the leaves explicitly written.

3Disjoint unions of crystals are usually depicted as separated components. However, we want to insist on the
correspondence between Kashiwara crystals and symplectic singularities. For this reason, we will depict Xλ as a
unique crystal whose entries are direct sums of tableaux, to keep track of the stratification of Xλ.
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• For λ = (14) H is lifted and C is fully resolved. Correspondingly, the crystal is resolved
into X(14) = 1 ⊕ 1 ⊕ 1 ⊕ 1 . There are no singularities and hence no transitions.

• For λ = (2, 12) we have

3 ⊕ 2 ⊕ 2

1 ⊕ 2 ⊕ 2

•

•

2

1

A1

• • •
•

•
•

• For λ = (22) we have

3 ⊕ 3

3 ⊕ 1 1 ⊕ 3

1 ⊕ 1

A1 A1

A1 A1

•

••

•

2

11

0

A1A1

A1A1

• •
• •

• •

Be aware of the difference between the λ = (2, 2) mass deformation of U(2) with n = 4
and the U(2)×U(2) quiver with framing w = (2, 2).

• For λ = (3, 1) we have

4 ⊕ 2

2 ⊕ 2

•

•

2

1

A2

• • •
•

•
•

• For λ = (4) we have

5

3

1

•

•

•

2

1

0

A3

A1

• • • •

• •

17



Moving gradually to higher-codimensional loci in M (n) we observe:

λ=(4)

λ=(3,1)

λ=(22)

λ=(2,11)λ=(14)

•

•

•

•

•

•

• •

•

•

•

•

codim-0 codim-1 codim-2 codim-3

A3

A1

A2

A1 A1

A1 A1

A1

4.1.2 SQCD

Examples of resolved crystals X

[
N◦ −

n
�

]
for U(N) theories with n fundamental flavours are

collected in Appendix A. The Hasse diagram of Xλ
[

2◦ −
n
�

]
is:

•

• • • · · · •

• • • • • · · · • • • · · · •

Aλ1−1

Aλ1−3 Aλ2−1 Aλ3−1 Aλ`−1

while higher rank theories have Hasse diagrams that continue below in the same fashion. We
have written the type of a few transitions explicitly as an example, with other lines gray and
dashed to help visualization.

4.1.3 A2,w = (5, 2)

We now discuss the resolution X

[
5
�− 4◦ − 3◦ −

2
�

]
of the crystal (3.3) when real masses are turned

on. We focus on the concrete case λ = (5, 2). There are three possible highest weight tableaux:(
6 ⊗ 1

)
⊕
(

1 ⊗ 3
) (

5 ⊗ 2
)
⊕
(

2 ⊗ 2
) (

4 ⊗ 3
)
⊕
(

3 ⊗ 1
)

corresponding to, respectively,

(w1(λ1),w2(λ1)) =


(5, 0),

(4, 1),

(3, 2),

(w1(λ2),w2(λ2)) =


(0, 2),

(1, 1),

(2, 0).
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The three resulting crystals are: (
6 ⊗ 1

)
⊕
(

1 ⊗ 3
)

(
4 ⊗ 2

)
⊕
(

1 ⊗ 3
) (

6 ⊗ 1
)
⊕
(

2 ⊗ 1
)

(
2 ⊗ 3

)
⊕
(

1 ⊗ 3
) (

4 ⊗ 2
)
⊕
(

2 ⊗ 1
)

(
2 ⊗ 3

)
⊕
(

2 ⊗ 1
)(

3 ⊗ 1
)
⊕
(

1 ⊗ 3
)

(
1 ⊗ 2

)
⊕
(

1 ⊗ 3
) (

3 ⊗ 1
)
⊕
(

2 ⊗ 1
)

(
1 ⊗ 2

)
⊕
(

2 ⊗ 1
)

A4 A1

A4

A2 A1

A1
A2A1

A1
A1A1

A1 A1

•

• •

• •

••

• •

•

A4 A1

A4A2
A1

A1
A2A1

A1
A1A1

A1 A1

(4.1)

(
5 ⊗ 2

)
⊕
(

2 ⊗ 2
)

(
3 ⊗ 3

)
⊕
(

2 ⊗ 2
)

(
4 ⊗ 1

)
⊕
(

2 ⊗ 2
) (

1 ⊗ 4
)
⊕
(

2 ⊗ 2
)

(
2 ⊗ 2

)
⊕
(

2 ⊗ 2
)

(
1 ⊗ 1

)
⊕
(

2 ⊗ 2
) (

2 ⊗ 2
)
⊕
(

1 ⊗ 1
)

(
1 ⊗ 1

)
⊕
(

1 ⊗ 1
)

A3

A1A1

A2 A2

a2 a2

a2 a2

•

•

• •

•

• •

•

A3

A1 A1

A2 A2

a2 a2

a2 a2

(4.2)
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(
4 ⊗ 3

)
⊕
(

3 ⊗ 1
)

(
2 ⊗ 4

)
⊕
(

3 ⊗ 1
) (

4 ⊗ 3
)
⊕
(

1 ⊗ 2
) (

5 ⊗ 1
)
⊕
(

3 ⊗ 1
)

(
2 ⊗ 4

)
⊕
(

1 ⊗ 2
) (

5 ⊗ 1
)
⊕
(

1 ⊗ 2
) (

3 ⊗ 2
)
⊕
(

3 ⊗ 1
)

(
3 ⊗ 2

)
⊕
(

1 ⊗ 2
) (

1 ⊗ 3
)
⊕
(

3 ⊗ 1
)

(
1 ⊗ 3

)
⊕
(

1 ⊗ 2
) (

2 ⊗ 1
)
⊕
(

3 ⊗ 1
)

(
2 ⊗ 1

)
⊕
(

1 ⊗ 2
)

A2
A1

A1

A2 A1 A1 A3A1
A2

A2

A3

A1
A1

A1 A1 A1

A1 A1

•

• • •

• • •

• •

• •

•

A2
A1

A1

A2 A1

A1
A3A1

A2

A2
A3

A1
A1

A1
A1

A1

A1 A1

(4.3)
An arrow is gray and dashed to improve the visualization and might be thought of as winding
around the crystal.

In all three cases, the outcome matches with the analysis of brane configurations:

(4.1) :

• • • • •
••

• • •
••
• • • • • •

•

•
••

••
•• • •

•

••
•• •

• ••

••
• ••

•

•
•

A4 A1

A4A2

A1

A1

A1
A2

A1

A1
A1

A1 A1
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(4.2) :

• • ••
•

•
•

••
•

••
•

•
• • •

• •
• • •

•

•
•

•
•

• •
••

A3

A1A1

A2 A2

a2 a2

a2 a2

(4.3) :

• • •
••

••

•
••

• • • • • • ••
•

• • ••
••

• • • •
•

• • ••
•

••
••

•

•• •
• ••

••

••
•

•
••

•
•

A2
A1

A1

A1
A2A2

A1
A1

A3

A2

A2

A1

A1

A1
A1

A1

A1 A1

5 Crystals for other classical root systems

Despite having given Result 2 in full generality, so far the spotlight has been on type A quiv-
ers. Nevertheless, Kashiwara crystals exist for type BCD quivers as well [61] (see [54, 34]
for textbook treatments). Crystals for Coulomb branches of type BCD are in bijection with
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brane configurations involving ON planes. We refrain from a detailed description, which follows
straightforwardly from combining the ideas in Section 3.3 with the analysis of [25].

We continue to exploit the map (3.1), with one additional detail: we will draw the boxes in
the same shape as Q◦. This will make clear our conventions about, for instance, which boxes of
a tableaux correspond to which spinor node in type D quivers. Let us remark that, despite the
unusual appearance, our crystals agree with the mathematical literature, simply because they
satisfy the same set of axioms.

As above, we provide evidence in support of Result 2 through the construction of explicit
examples.

5.1 Type D examples

The Dynkin diagram of type D is classical and simply-laced. We proceed as in Section 3.1,
where the rules to construct Kashiwara crystals have been stated for all finite or affine g.

A type D quiver Q may accommodate both A-type and D-type sub-quivers, thus we will see
the appearance of a novel kind of transition, whose transverse slice is the closure of a minimal
nilpotent orbit dr. It corresponds to the Dr quiver

2 2 · · · 2

1

1

1

1
1
⊗

1 ⊗ 2 ⊗ 1 ⊗ ··· ⊗ 1
⊗
1

whose associated tableau is drawn on the right (note the different conventions for the spinor
nodes compared to the linear part).

5.1.1 Balanced D4 quiver with two flavours

To exemplify the difference between quivers of type A and D, let us consider the balanced D4

quiver with gauge group U(4)×U(2)3 with two flavours attached at the U(4) node.
We show the quivers describing the various strata of the Coulomb branch on the left and the
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corresponding crystal on the right:

◦ ◦
◦

◦
�− −

|

|2 4

2

2

2

◦ ◦
◦

◦

�

�

�
−
−

−

|

|

|
2 3

1 2

2

1

1

◦ ◦
◦

◦

�
−
|

|

|
2 2

2 1

1

◦ ◦
◦

◦
�− −

|

|
1 2

1

1

1

∅

1
⊗

1 ⊗ 3
⊗
1

2
⊗

2 ⊗ 1
⊗
2

1
⊗

3 ⊗ 1
⊗
1

1
⊗

1 ⊗ 2
⊗
1

1
⊗

1 ⊗ 1
⊗
1

A1

d3

A1

d4

(5.1)

The second transition, denoted d3, is nothing but an a3 transition involving the two spinor
nodes. The transverse slices are isomorphic, a3

∼= d3, nevertheless the notation d3 identifies
which roots are involved and the consequent action on the neighbour boxes. The last step is a
d4 transition.

5.1.2 Balanced D5 quiver with four flavours

The next example is a D5 quiver with gauge group U(2)× U(4)3 × U(6) and four flavours, two
at each spinor node. We represent the quiver subtraction pattern on the left and the crystal on
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the right, showing perfect agreement:

◦ ◦ ◦
◦

◦ �

�
− −

−

−

|

|2 4 6

4

4 2

2

◦ ◦ ◦
◦

◦
�
�

− − −
−

|

|2 4 6

3

4 2

1
◦ ◦ ◦

◦

◦
�
�

− − −
−
|

|2 4 6

4

3

2

1

◦ ◦ ◦
◦

◦
�− − −

|

|2 4 6

3

3

2

◦ ◦ ◦
◦

◦ �

��
− −

−

−

|

|

|
2 4 5

3

3

1

1

1

◦ ◦ ◦
◦

◦

�
− −

|

|

|
2 4 4

2

2

2

◦ ◦ ◦
◦

◦

�
�− − −

|

||
2 3 4

2

2

1

1

◦ ◦ ◦
◦

◦ �

�
− −

−

−

|

|1 2 3

2

2 1

1

◦ ◦ ◦
◦

◦

�
− −

|

||
1 2 2

1

1

1

∅

3
⊗

1 ⊗ 1 ⊗ 1
⊗
3

3
⊗

1 ⊗ 1 ⊗ 2
⊗
1

1
⊗

1 ⊗ 1 ⊗ 2
⊗
3

1
⊗

1 ⊗ 1 ⊗ 3
⊗
1

2
⊗

1 ⊗ 2 ⊗ 1
⊗
2

1
⊗

1 ⊗ 3 ⊗ 1
⊗
1

1
⊗

2 ⊗ 1 ⊗ 2
⊗
1

2
⊗

1 ⊗ 1 ⊗ 1
⊗
2

1
⊗

1 ⊗ 2 ⊗ 1
⊗
1

1
⊗

1 ⊗ 1 ⊗ 1
⊗
1

A1 A1

A1 A1

A1

d3

A1

a3

d3

d5

(5.2)
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Note again the distinction between the d3 transition, involving the spinor nodes, and the a3

transition, involving the linear part.

5.2 Non-simply laced quivers

On the field theory side, non-simply laced quivers are elusive from the Lagrangian point of view.
However, one can always associate a Coulomb branch C[Q] to a quiver Q shaped as a Br or
Cr Dynkin diagram. These Coulomb branches are constructed leveraging the natural inclusions
Br ↪→ Dr+1 and Cr ↪→ A2r−1 [38]. Each such map induces the inclusion Q ↪→ Q̃ into a larger,
simply-laced quiver. Then, folding Q̃ to produce Q induces a folding operation C[Q̃] → C [Q]
[62, 63]. Two concrete examples are:

C4 ↪→ A7 :

2 4 6 8 246

2 4 6 8

Q̃

Q

fold

and

B5 ↪→ D6 :

1

1

2 2 2

1

1

1

1

2 2 2 1

Q̃

Q

fold

Notably, this construction is precisely the one to produce crystals for non-simply laced Lie
algebras Lg: starting from an ambient crystal C̃, associated to the larger, simply-connected Lie
algebra, one obtains a sub-crystal C for Lg.

Main result 5. The Coulomb branch C[Q], constructed via quiver folding Q̃→ Q, is described
by a crystal C[Q] obtained folding the crystal C[Q̃].

In particular, we observe that the construction via folding and that in Algorithm 1 produce
the same output. This yields an independent check of the validity of the quiver folding procedure
to construct C[Q], since the proof of the agreement on the crystal side is combinatorial and
independent of the gauge theory interpretation.

Folding crystals of type AD will automatically produce bp, cp transitions of tableaux, that
are folded versions of the dp+1, a2p−1 transitions. We proceed to show the validity of Result 5
in selected examples.

5.2.1 C2 quiver with two flavours

To present the folding procedure [63] at the level of crystals, we start with the simple C2 quiver
2
� − 2◦ ⇐ 2◦, obtained folding the balanced A3 quiver

2
� − 2◦ − 2◦ − 2◦ −

2
�. The corresponding
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crystals are:

C

[
2
�− 2◦ − 2◦ − 2◦ −

2
�

]
: C

[
2
�− 2◦ ⇐ 2◦

]
:

3 ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ 3 3 ⊗ 2 ⊗ 1

1 ⊗ 3 ⊗ 1

2 ⊗ 1 ⊗ 2

1 ⊗ 1 ⊗ 1

A1 A1

A1 A1

A1

a3

3 ⊗ 1

1 ⊗ 3

2 ⊗ 1

1 ⊗ 1

A1

A1

c2

Despite its apparent simplicity, this C2 quiver already shows a subtle aspect. As explained in
[25], transitions among strata of C arise from fine-tuning certain Kähler moduli. In this case,
there is a modulus, or degree of freedom, left from the next-to-last tableau, which allows for one
last c2 transition, even though there is no Higgs branch direction opening in this case. While not
immediately obvious from a gauge theoretical perspective, this effect is automatically accounted
for in our picture using Kashiwara crystals.

5.2.2 C2 quiver with six flavours

The next example is again a C2 quiver, this time unbalanced:

Q̃ : ◦ ◦ ◦
�

1 4 1

6

Q : ◦ ◦
�

1 4

6
||

−− ⇐fold
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The corresponding crystal is:

C
[
Q̃
]

: C [Q] :

1 ⊗ 7 ⊗ 1

2 ⊗ 5 ⊗ 2

3 ⊗ 3 ⊗ 3

1 ⊗ 4 ⊗ 3 4 ⊗ 1 ⊗ 4 3 ⊗ 4 ⊗ 1

2 ⊗ 2 ⊗ 4 1 ⊗ 5 ⊗ 1 4 ⊗ 2 ⊗ 2

2 ⊗ 3 ⊗ 2

3 ⊗ 1 ⊗ 3

A5

A3

A1 A1 A1

A2

A1

A2

A1

A2 A2

A2

A2
A2

A1

1 ⊗ 7

2 ⊗ 5

3 ⊗ 3

4 ⊗ 2 1 ⊗ 5

2 ⊗ 3

3 ⊗ 1

The crystal may be continued below in the same vein to get C

[
3◦ ⇐ 6◦ −

6
�

]
.

Balanced B2 quiver with four flavours

The B2 Dynkin diagram is the simplest of the B series and can be obtained folding D3
∼= A3.

Let us present the example of the B2 quiver with gauge group U(3) × U(2), with two flavours
attached at the U(3) node and one flavour attached at the U(2) node.

The quiver folding is

◦
◦

◦ �

�
�
−

−
−
|

|
3

2

2

2

1

1

−→ �
2
− ◦

3
⇒ ◦

2
−�

1
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The ambient D3 crystal, its folding into B2 and the quiver subtraction pattern are:

2
⊗
3
⊗
2

3
⊗
1
⊗
3

1
⊗
2
⊗
3

3
⊗
2
⊗
1

1
⊗
3
⊗
1

2
⊗
1
⊗
2

1
⊗
1
⊗
1

A1

A1 A1

A1 A1

A1

d3

3 ⊗ 2

1 ⊗ 3

3 ⊗ 1

1 ⊗ 2

1 ⊗ 1

A1

A1

A1

b2

�
2
− ◦

3
⇒ ◦

2
−�

1

◦
2
⇒ ◦

2
−�

2

�
2
− ◦

2
⇒ ◦

1

◦
1
⇒ ◦

1
−�

1

∅
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5.2.3 Balanced B4 quiver with two flavours

The next example of type B is the balanced B4 quiver
2◦ − 4◦ − 6◦ ⇒ 4◦ −

2
�. The corresponding

crystal is obtained folding the D5 crystal in (5.2):

◦ ◦ ◦ ◦
�

− ⇒−
|

2 4 6 4

2

◦ ◦ ◦ ◦
�
− ⇒−
|

2 4 6 3

2

◦ ◦ ◦ ◦
��

− ⇒−
| |

2 4 5 3

11

◦ ◦ ◦ ◦
�
− ⇒−
|

2 4 4 2

2

◦ ◦ ◦ ◦
� �
− ⇒−

| |
2 3 4 2

1 1

◦ ◦ ◦ ◦
�

− ⇒−
|

1 2 3 2

1

◦ ◦ ◦ ◦
�
− ⇒−
|

1 2 2 1

1

∅

1 ⊗ 1 ⊗ 1 ⊗ 3

1 ⊗ 1 ⊗ 3 ⊗ 1

1 ⊗ 2 ⊗ 1 ⊗ 2

1 ⊗ 3 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 2 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗ 2

1 ⊗ 2 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗ 1

A1

A1

b2

A1

a3

b2

b4

5.2.4 G2 quivers

We observe that any C[Q] with Q (i) shaped like a D4 Dynkin diagram, and (ii) with assignment
of gauge groups and matter content that preserves the triality symmetry of D4, can be “tri-
folded” into a crystal of exceptional type G2. An explicit example is the folding of the crystal
(5.1).

5.2.5 Two paths to Coulomb branches of non-simply laced quivers

To sum up, we have provided and tested in various examples two alternative approaches to the
construction of Kashiwara crystals C [Q] that capture the Coulomb branches C [Q] of non-simply
laced quivers Q, namely

• applying Algorithm 1 with type B and type C root systems, or

• folding type D and type A crystals.

The existence of a twofold way to get C[Q] is not accidental. Crystals for any Q have been built
in [59], extending [33], starting from generalized slices of the affine Grassmannian. These latter
objects, in turn, give C[Q]. There exist two proofs of such statement for non-simply laced Q:
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either via folding [11] or by direct construction [17]. The equivalence of the two proofs as well
as the relation with the works [33, 59] appeared in [17]. In the present section, we have closed
the circle of ideas, showing the equivalence between folding of crystals and direct construction.

Remarkably, the algebro-geometric setup of [15, 17] allows to study non-simply laced quivers
of more general shape. We leave the investigation of a crystal counterpart of such setup for
future work.

6 Crystals for affine quivers

This section is devoted to the analysis of Coulomb branches of quivers of affine type Âr. We
label the nodes by j ∈ {0, 1, . . . , r}, with periodic identification r + 1 ≡ 0.

Affine crystals have been studied initially for affine type A [64, 65] and later extended to
other affine types. Including the coroot α∨0 in the construction of Section 3 we obtain a crystal
C[Q] which is the amputation of a periodic crystal after Nj Kashiwara operations have been
performed on the jth node, ∀j = 0, 1, . . . , r. In the limit Nj → ∞ we would be left with a
periodic crystal.

A major difference from the finite g case lies in the conservation of the sum of letters in each
tableaux, that is,

∑r
j=0 wj is constant along the crystal.

6.1 Crystals from affine quiver subtraction and from branes

Consider an affine framed quiver Q. Repeated application of the quiver subtraction algorithm
on Q [60] produces a sequence of quivers of lower rank. Reasoning as in Section 3.2, we identify
such quivers with tableaux in the crystal C[Q].

Moreover, consider the Hanany–Witten setup of Section 3.3, but now with the direction x6

compactified. That is, the D3 branes now fill the 3d spacetime times a circle. These brane
configurations produce the desired affine type A quiver gauge theories. Then, precisely as
in Section 3.3, tableaux in the crystal are in one-to-one correspondence with phases of the
Hanany–Witten configuration, once the additional coroot α∨0 is taken into account to “affinize”
the crystal.

If, in the initial Hanany–Witten configuration, we send the number (N1, N2, . . . , Nr, N0) of
D3 branes in each interval to infinity, the brane phase diagram becomes periodic. This would
give the full periodic crystal. For a finite number of D3 branes, however, the periodicity is
broken after Nj transitions involving the jth interval have been performed.

6.2 Affine type A examples

We now motivate our claim with selected examples.
D3 branes that wrap around the circle direction are dashed, that is, dashed D3 branes drawn

on the left of the leftmost NS5 brane are joined with the dashed D3 branes on the right of the
rightmost NS5 brane.

30



6.2.1 Â2 quiver with two flavours

Consider the following affine crystal of type Â2:

1 ⊗ 3 ⊗ 1

2 ⊗ 1 ⊗ 2

This would correspond to a quiver with framing w = (0, 2, 0). However, to get a physical
Coulomb branch we must specify the ranks N = (N1, N2, N0). For instance, the quiver

Q: 2 2

2

2
(6.1)

is associated with the crystal

1 ⊗ 3 ⊗ 1

2 ⊗ 1 ⊗ 2

1 ⊗ 3 ⊗ 1

2 ⊗ 1 ⊗ 2

1 ⊗ 3 ⊗ 1

A1

a2

a3

A1

a2

◦ ◦
◦

�− −
|

2 2 2

2

◦ ◦
◦ ��
−
−

| |
2 1

2
11

◦ ◦
◦

�− −
|

1 1 2

1

◦
◦ �� −

|
1

1
11

∅

••

• •

••

••

••

where we have represented C[Q] in the middle, the corresponding brane system on the left and
the quiver subtraction pattern on the right.

6.2.2 Â2 quiver with six flavours

For the next example, we add flavours to the Â2 quiver (6.1) and consider

Q: 2 2

2

22

2

(6.2)

31



The associated crystal C[Q] is

3 ⊗ 3 ⊗ 3

4 ⊗ 1 ⊗ 41 ⊗ 4 ⊗ 4 4 ⊗ 4 ⊗ 1

2 ⊗ 5 ⊗ 22 ⊗ 2 ⊗ 5 5 ⊗ 2 ⊗ 2

3 ⊗ 3 ⊗ 3

1 ⊗ 7 ⊗ 11 ⊗ 1 ⊗ 7 7 ⊗ 1 ⊗ 1

4 ⊗ 1 ⊗ 41 ⊗ 4 ⊗ 4 4 ⊗ 4 ⊗ 1

2 ⊗ 5 ⊗ 22 ⊗ 2 ⊗ 5 5 ⊗ 2 ⊗ 2

3 ⊗ 3 ⊗ 3

A1
A1

A1

A2
A2 A2

A2A2 A2

A3

A3
A3

a2 a2a2

A1 A1

A1

A5 A5

A5

A2
A2

A2
A2

A2

A2

A3

A3
A3

(6.3)

The triality symmetry of Q is manifestly inherited by C[Q]. Moreover, we observe that, increasing
the ranks of the gauge nodes, the crystal would repeat its structure, eventually becoming periodic
in the inductive limit (N1, N2, N0)→ (∞,∞,∞), producing an actual affine Kashiwara crystal.
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The phases predicted by (6.3) agree with the brane analysis:

•••• ••

• • • • • • • • • • • • • • • • • •

• • • ••• • •• • •• • • •• • •

•••• ••

••••••

a2

••••••

a2

••••••

a2

• • • • • • • • • • • • • • • • • •

• • •••• • • ••• • • • •• • •

•••• ••

7 Infinite crystals, Verma modules and Hilbert spaces

In this section we depart from the theory of crystal bases exploited so far, and consider infinite
crystals CΦ

∞. On one hand, Verma modules admit a realization using infinite crystals [66], whilst,
on the other hand, the action of monopole operators generates Verma modules of the Coulomb
branch coordinate ring C[C] [37]. The aim of the present section is to explicate this analogy.

7.1 Infinite crystals

We now introduce infinite crystals CΦ
∞, following a combinatorial presentation [34], but we ought

to emphasize that the seminal work [66] introduced them using only the theory of quantum
groups. Moreover, a geometric realization modelled after quiver varieties is given in [55].

Fix a reductive group G of rank r, with root system Φ, and let j ∈ N run over the index set of
Φ. Consider the collection {uj(k)}k∈Z ≡ UΦ

j and declare that wt(uj(k)) = (0, . . . , 0, k,−k, 0, . . . , 0)

with k in the jth entry and −k in the (j + 1)th entry. Defining the action of the Kashiwara
operators

fjuj′(k) = δjj′uj(k − 1), ejuj′(k) = δjj′uj(k + 1),

so that the weight changes by αj ∈ Φ, endows UΦ
j with a crystal structure.

The ultimate goal is to study moduli spaces of monopole operators in three dimensions.
We first follow a textbook treatment of the infinite crystals, in which the gauge group imposes
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no constraint on the monopoles. Then we expand the discussion to include quivers with more
general choices of gauge group.

7.1.1 Infinite crystals: Freely generated Verma modules

Let w0 be the long element of the Weyl group of G and let (j1, . . . , j`) be the reduced word from
the reduced decomposition of w0 [38]. For example, if Φ = Ar, we take

` =
r(r + 1)

2
, (j1, . . . , j`) = (1, 2, . . . , r, 1, 2, . . . , r − 1, . . . , 3, 1, 2, 1).

To lighten the notation, for any `-tuple k = (k1, . . . , k`) let us define [34]

uΦ(k) ≡ uj1(−k1)⊗ · · · ⊗ uj`(−k`).

The crystal CΦ
∞ is defined to be the subset

CΦ
∞ ⊂ UΦ

j1 ⊗ · · · ⊗ UΦ
j`

obtained acting on the element uΦ(0) with Kashiwara operators fj in any order. Imposing

ej(u
Φ(k)) = 0 if kj = 0

yields the crystal structure on CΦ
∞. These crystals are crystal bases for g-Verma modules. For

more details, we refer to the monograph [34] (note that the infinite crystals are usually denoted
B(∞) or B∞ in the literature).

7.1.2 Infinite crystals: Abelian quivers

The construction that we have just outlined depends only on Φ and does not take into account
the gauge group, thus works for freely generated Verma modules. Let us now consider Abelian
quivers, with focus on Ar for concreteness.

To enforce the Abelian group condition, the crystal C
U(1)r

∞ is built as above, but with ` = r

and labels (1, . . . , r). The infinite A1 crystal C
U(1)
∞ is

u(0)→ u(1)→ u(2)→ u(3)→ · · · , (7.1)

and the more general Ar crystal C
U(1)r

∞ is

u(0,0,...,0)

u(1,0,...,0) u(0,1,...,0) u(0,0,...,1)···

f1
f2

fr

u(2,0,...,0) u(1,1,...,0) u(0,2,...,0) u(0,...,1,1) u(0,...,0,2)···

f1

f2

f1

f2

fr
fr−1

...
...

...
...

... (7.2)

7.1.3 Infinite crystals: SQCD

To study a generic quiver gauge theory we need to decorate each node of the Dynkin diagram

of G with arbitrary gauge group G. We now discuss the crystal C
U(N)
∞ associated to single-node

U(N) theories. For that, we include the action of Kashiwara operators for U(N) roots. In
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other words, we decorate each u(k) in the crystal (7.1) with an N -tuple k = (k1, . . . , kN ) with∑N
s=1 ks = k. The gauge Kashiwara operators fs then act as

fsu(k|(k1, . . . , ks, . . . , kN )) = u(k|(k1, . . . , ks + 1, . . . , kN )).

In particular each fs includes the action f1(u(k)) = u(k+1) of the unique A1 Kashiwara operator
f1. For example, G = U(2) gives

u(0|(0,0))

u(1|(1,0)) u(1|(0,1))

u(2|(2,0)) u(2|(0,2))u(2|(1,1))

while a gauge group G = U(3) gives (we represent it in a 3d view)

u(0|(0,0,0))

u(1|(1,0,0))

u(1|(0,1,0))

u(1|(0,0,1))

u(2|(2,0,0))

u(2|(0,2,0))

u(2|(0,0,2))

u(2|(1,0,1))

u(2|(0,1,1))

u(2|(1,1,0))

Both crystals are understood to continue infinitely.

7.1.4 Crystals, characters and Verma modules

There exists a notion of character of crystals C, defined as

χC(t) =
∑
T∈C

t−wt(T )+ρ =
∑
w∈Λ∨w

P C(w)t−(w+ρ), (7.3)

where ρ = 1
2

∑
αj∈Φ+

αj is the Weyl vector and the function P C(w), known as Kostant partition
function, counts the number of tableaux in C of weight w. The multi-variable t generically
denotes all the fugacities in the problem. For the crystals CΦ

∞ in the bases of freely generated
Verma modules, it is well-known and easy to check that the character (7.3) equals

χCΦ
∞(t) =

∏
α∈Φ+

(
t−α/2 − tα/2

)−1
. (7.4)

More generally, χCΦ
∞ equals the character of the corresponding Verma module [67, 66].
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7.2 Crystals for Coulomb branch Verma modules

Throughout this subsection, we consider a good 3d N = 4 theory [5] with gauge group G as
in (2.3). It is assumed that masses and FI parameters are generic, so that the moduli space of
vacua consists of a collection of isolated massive vacua. The theory is placed on R×C with the
Omega-background turned on [7, 37]. In this way, the system is effectively reduced to a quantum
mechanics along R, leading to the study of the corresponding Hilbert space. For any choice of
vacuum state |v〉, the action of monopole operators on |v〉 generates the full Hilbert space H (v)
and endows it with the structure of a Verma module for the Coulomb branch algebra [37]. In
what follows we restrict our attention to balanced quivers.

Main result 6. For any |v〉, H (v) is given by a crystal CΦ
∞ of type G.

Within this context, Gaiotto and Okazaki [68] (see also [69]) conjectured that, when generic
masses m and FI parameters ζ are turned on, the three-sphere partition function in a suitable
limit takes the form

ZS3(m, ζ) =
∑
v

ei
π
2
κbg(v)ei2πm·k(v)·ζχC(x; v)χH(y; v). (7.5)

The sum runs over the isolated vacua of the theory, κbg(v) includes background mixed Chern–
Simons couplings, k(v) is a matrix of mixed Chern–Simons couplings, and χC , χH are twisted
traces on the Coulomb and Higgs branch Verma modules in the given vacuum, respectively. We
have also introduced the fugacities x ≡ e−2πζ and y ≡ e−2πm for the Coulomb and Higgs branch
global symmetries, respectively.

The special limiting procedure of [68] introduces a Z2 twist of the Verma module characters
from the centre of the R-symmetry [69].4 At the present stage, we do not know how to system-
atically include such twist in the crystals. Its effect, however, trivializes for balanced quivers,
which are the only ones we consider. Under the balancing assumption, we find that

χCΦ
∞(t) = χC(t; v).

We do not have a direct construction for Higgs branch Verma module characters χH via
crystals. However, we may take mirror symmetry as a working assumption and define a Higgs
branch crystal as the crystal CΦ

∞ corresponding to the Coulomb branch of the mirror theory.
An alternative approach would be to consider the isomorphism between (certain resolutions of)
slices in the affine Grassmannian and (resolutions of) closures of nilpotent orbits [56] and exploit
the equivalence of the crystal bases on the two sides [57].

For technical reasons, we only consider balanced quivers which moreover belong to one of the
three classes in Subsections 7.1.1, 7.1.2 and 7.1.3. Nonetheless, it is conceivable that one may
consider more general non-Abelian quivers, although the balancing conditions seems harder to
lift at the present stage.

In this way, part of the conjecture of [68] holds on general grounds as a consequence of Result
6, mirror symmetry and the equality of characters of crystals and Verma modules. However,
to get a full proof of (7.5) using only the theory of crystal bases, several aspects have to be
clarified:

(i) how to treat non-balanced quivers;

(ii) how to incorporate the Z2 R-symmetry twist in the traces;

4This twisting factor appears also in the partition function of 3d N = 3 Chern–Simons theories [70].
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(iii) how to predict the correct mixed Chern–Simons couplings.

We present the explicit match between the characters derived from crystals and those in [68].5

To lighten the expressions, let us write for short C∞ for CAr∞ and

∆(x, y) ≡

((
x

y

)−1/2

−
(
x

y

)1/2
)−1

. (7.6)

As a side observation, note that (7.6) satisfies the reproducing property∮
U(1)

dz

2πiz
∆(x, z)∆(z, y) = ∆(x, y).

Physically, to take a Cauchy integral over the fugacity z is to gauge the corresponding U(1).

So far we have not discerned among the various crystals CΦ
∞ associated to different vacua |v〉,

i.e. we have not given a map v 7→ CΦ
∞. The reason is that they are all isomorphic as crystals.

There is nevertheless a simple rule to count them, which corresponds to count the possible ways
to express the independent parameters as functions of the fugacities x, y.

7.2.1 SQED

Consider 3d balanced SQED, i.e. the A1 quiver with U(1) gauge group and 2 fundamental

flavours. The G = U(1) crystal C
1◦−

2
�

∞ was given in (7.1). We observe that the structure read off

from C
1◦−

2
�

∞ matches that of H (v), generated by acting with a single raising monopole operator.
To compute the traces χC , χH, we observe that each weight occurs once in (7.1), so that

using (7.3) with P C
1◦−

2
�

∞ (w) = 1 ∀w, gives

χC
1◦−

2
�

∞ (x) =

∞∑
k=0

(
x1

x2

)k+ 1
2

= ∆(x1, x2). (7.7)

The theory is self-mirror, hence the Higgs branch Verma module is isomorphic to what we have
just described.

7.2.2 T [SU(n)]

We consider the T [SU(n)] quiver
1◦ − 2◦ − · · · −

(n−1)
◦ −

n
�. Combining the rules in Subsection

7.1.1 and 7.1.3, elements of the corresponding An−1 crystal C
T [SU(n)]
∞ are uniquely specified by a

collection of integers (k1, . . . , kn−1) and arrays

{(kj,1, . . . , kj,j)}j=1,...,n−1 such that

j∑
s=1

kj,s = kj .

This description agrees with the Verma module structure on H (v) discussed in [37].
It is known from the onset that Verma modules of the Coulomb branch coordinate ring of

T [SU(n)] are freely generated [5]. Their character is thus given by (7.4) and reads

χC
T [SU(n)]
∞ (x) =

∏
1≤j<k≤n

∆(xj , xk), (7.8)

5Earlier exact results appeared e.g. in [71–75].
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with the function ∆(xj , xk) defined in (7.6). It indeed agrees with the sphere partition function
computations [72, 73].

A heuristic way to observe that the Verma module is freely generated stems from counting
Kashiwara operators: from Subsection 7.1.1 and setting r = n−1, we get n(n−1)

2 operators {fj},
while using the prescription of Subsection 7.1.3 at each gauge node gives the same total number
of gauge Kashiwara operators {fj,s}. As acting with a gauge Kashiwara operator increases the
weight by one, we see that they do not add elements u(k) to the crystal.

It is likely that (7.8) may be derived by induction on n and gluing, in a computation akin
to [76]. Further insight comes from the brane construction. Recall that, in our conventions,
the NS5 branes are placed at positions − 1

2π log x [24]. It is straightforward to compute the
characters for n = 1 and n = 2:

χC[T [SU(1)]] = 1 χC[T [SU(2)]] = ∆(x1, x2)

with dotted D3 branes understood to be stretched to infinity. Then, assuming (7.8) holds for n,
the formula for n+ 1 is obtained by gluing

· · · .
.
.

.

.

.

.

.

.

.

.

.

and assigning a factor ∆(xj , xn+1) to each D3 brane stretched between the jth and the newly
introduced (n + 1)th NS5 brane. While we do not have a rigorous proof of the gluing rule and
of the assignment of factors of ∆, it should be possible to derive it by refining the counting in
formula (7.3) with gauge fugacities, and then average over the gauge group G, which enforces a
projection onto gauge invariant operators, in a crystal analogue of [76] (see also e.g. [77–79] for
related manipulations of unitary matrix integrals).

7.2.3 Abelian linear quiver

Our next example is the balanced, Abelian An−1 quiver. Its Coulomb branch is a mirror de-
scription of the Higgs branch of SQED with n flavours.

The crystal C
U(1)n−1

∞ given in (7.2) captures the Hilbert space of the theory, which is generated
by acting with n − 1 commuting raising monopole operators. The general formula (7.3) gives
the character of (7.2):

χC
U(1)n−1

∞ (y) =

n−1∏
j=1

∞∑
kj=0

(
yj
yj+1

)kj+ 1
2

=

n−1∏
j=1

∆(yj , yj+1). (7.9)

Refining formula (7.3) by gauge fugacities and then averaging over U(1)n−1 produces the same
result.

There are

(
n

n− 1

)
= n ways to get n − 1 independent parameters out the the n fugacities

y, corresponding to the n ways of obtaining a framed U(1)n−1 quiver out of the affine, unframed
U(1)n. Putting all the pieces together, we find agreement with the existing literature.
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We observe that the gluing prescription above works also in this case. We start with SQED
with two flavours and add NS5 branes one by one,

· · ·

Including a factor ∆(x1, xj) when the jth NS5 brane is added and linked to the first NS5 brane
via a D3 brane, we get the character

n∏
j=2

∆(x1, xj).

This formula agrees with (7.9) but evaluated at a different vacuum of the theory. The x-basis
and y-basis are related through xk = x1

∏k
j=1 yj+1/yj . In other words, formula (7.9) takes as

n − 1 independent variables yj+1/yj whereas the brane rule expresses the result in the n − 1
independent variables xj/x1 (the latter being the normalization chosen in [68]).

7.2.4 SQCD

Consider now U(N) with 2N fundamental flavours. Each element u(k|k) ∈ C
N◦−

2N
�

∞ is specified
by an integer k and an array k = (k1, . . . , kN ) ∈ NN satisfying

∑N
s=1 ks = k. By the construction

in Subsection 7.1.3,

k : ∃(s1, . . . , sk) ∈ Nk such that es1 · · · esku(k|k) = u(0),

where es is the U(N) gauge Kashiwara operator. This is precisely the crystal analogue of the
structure of H (v) [37].

Let us now derive the Coulomb branch Verma trace. We use that there are

(
k +N − 1

k

)
elements u(k|k) ∈ C

N◦−
2N
�

∞ at distance k from u(0). Therefore (7.3) gives

χC
N◦−

2N
�

∞ (x) =

∞∑
k=0

(
k +N − 1

k

)(
x1

x2

)k+N
2

= ∆(x1, x2)N . (7.10)

This formula is again correctly reproduced by gluing brane configurations:

.

.

.

.

.

.

.

.

.

.

.

.

and counting a factor ∆(x1, x2) for every D3 brane linking the two NS5 branes.

8 Outlook

There are several open problems that could be considered, but a treatment of them is out of
the scope of the present paper. In this final section we discuss possible directions for which the
present study has laid the groundwork for further research.
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Geometric crystals

A notion of geometric crystal was introduced in [58], as opposed to the combinatorial crystals
that we have considered so far. Geometric crystals are algebraic varieties endowed with addi-
tional structures that parallel Kashiwara’s construction. The crystals C∞ discussed in Section
7 arise as tropicalizations of geometric crystals.

In the tropical limit description, the elements u(k1, . . . , kr) are represented as convex poly-
topes, known as MV-polytopes [80, 81]. A characterizing property of the latter is that they
satisfy tropical Plücker relations, see [81] and subsequent works for in-depth discussion. These
MV-polytopes are combinatorial analogues of the MV-cycles (after Mirkovic–Vilonen [82]), which
are closed subvarieties of GrG. The crystal structure on MV-cycles and its relevance for 3d N = 4
Coulomb branches were pointed out in [11].

Lifting the correspondence between C∞ and Coulomb branch Verma modules to the level of
geometric crystals would pave the way to tackle a wealth of problems that revolve around 3d
N = 4 Coulomb branches using crystal bases. Here we list a couple of avenues whose systematic
exploration is left for future work.

Homological knot invariants

The construction of a knot homology theory starting from the resolution X → C of the Coulomb
branch of a 3d N = 4 quiver theory has been recently put forward in [83, 84]. A main ingredient
in that story is a “weighted” generalization of KLR algebras [85]. On the other hand, MV-
polytopes are isomorphic to representations of KLR algebras [86]. In this way, the infinite
crystals C∞ arise on both sides of the bridge connecting Coulomb branches and knot homologies,
although in disguise and playing different roles.

Along different lines, Littlemann’s path model [87] describes crystal structures as random
walks in the (co)weight lattice. This presentation in terms of piecewise linear functions in Λ∨w is
alternative and equivalent to that using MV-polytopes. A refined version of Littlemann’s path
model, more fitting in a geometric lift, was discussed in [88]. One result of [88] is, roughly, that
acting with a preferred sequence of Kashiwara ej operators on a Littlemann path one gets a
Brownian motion in the Weyl chamber of G. Aspects of the latter, in turn, are computed in
some cases by colored unknot invariants in S3 [89].

It would be interesting to explore further the web of relations among geometric crystals and
their tropical limit, knot invariants, and 3d N = 4 Coulomb branches. In particular, a question
worth asking is whether certain path models for geometric crystals (or a categorification thereof)
may produce homological knots invariants, paralleling the way in which certain polynomial knot
invariants are computed by combinatorial path models [89].

5d Higgs branches

MV-polytopes bear a close resemblance with (non-triangulated) toric polygons. The latter are
dual to tropical curves and can be used to describe 5d supersymmetric gauge theories. The
tropical geometry approach has been recently adopted in [90] to understand the structure of 5d
Higgs branches at strong coupling. Another useful tool to analyze 5d Higgs branches is provided
by the magnetic quivers [91–93]. These devices are suitable 3d N = 4 quivers whose Coulomb
branch is isomorphic to (a component of) the Higgs branch of the 5d theory.

Because of their role in describing 3d N = 4 Coulomb branches on one hand, and their roots
into tropical geometry on the other, it seems plausible that MV-polytopes and the crystals C∞
may be used to shed light on 5d Higgs branches from a new angle. Finding a crystal analogue
of the construction of [90] is an intriguing open problem that we leave for the future.
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A Examples of crystals for Coulomb branches

In this appendix we collect further examples of resolved crystals X that reproduce the resolution
of Coulomb branches X → C as one moves along the parameter space. The appendix is meant
to complement Section 4 and to provide further insight into Result 4.

A.1 More mass-deformed type A examples

A.1.1 Conventions

Throughout this appendix, for the sake of clarity in the pictures, whenever two lines cross each
other, one of them is drawn gray and dashed. Moreover, to reduce clutter, when a subset of the
boxes is frozen and does not contribute to any transition, we replace all such boxes by a single
black box.

A.1.2 U(2) with 6 flavours

The parameter space M (6) =
⊔
λ M

(6)
λ is stratified as

λ=(16) λ=(2,14)

λ=(3,13)

λ=(22,12)

λ=(23)

λ=(3,2,1)

λ=(4,12)

λ=(32)

λ=(4,2)

λ=(5,1)

λ=(6)

codim-0 codim-1 codim-2 codim-3 codim-4 codim-5

• λ = (16). H is lifted and C is fully resolved.
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• λ = (2, 14). X has an A1 singularity.

3 ⊕

1 ⊕

•

•

A1

• • •
•••

•
•••

• λ = (3, 13). X has an A2 singularity.

4 ⊕

2 ⊕

•

•

A2

• • • •
••

• •
••

• λ = (22, 12). X has two separated A1 singularities, with two one-quaternionic dimensional
flat directions opening. X(22,12) is very similar to the crystal X(22) for n = 4.

• λ = (4, 12). Again, X(4,12) is essentially analogous to X(4).

• λ = (3, 2, 1).

4 ⊕ 3 ⊕

2 ⊕ 3 ⊕ 4 ⊕ 1 ⊕

2 ⊕ 1 ⊕

•

• •

•

A2

A1

A1

A2

• • •
• ••

•
• ••

• • •

•

•
•

• λ = (23). X(23) has three separated, indistinguishable A1 singularities. However, due to
the limitation on the rank (equivalently, on the number of D3 branes), only two transitions
are available. X in this case is recovered amputating the crystal for U(3) with 6 flavours
and λ = (23) given in Appendix A.1.3 below.

• λ = (4, 2). X(4,2) has an A3 and an A1 singularity. Due to the limitation on the rank, only
two out of the three potential transitions can be realized. X is obtained amputating the
bottom of the crystal for U(3) with 6 flavours and λ = (4, 2).

• λ = (32). The A5 singularity of the massless Coulomb branch splits into two separated A2
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singularities.

4 ⊕ 4

2 ⊕ 4 4 ⊕ 2

2 ⊕ 2

•

• •

•

A2 A2

A2 A2

• • •
• • •

• • •
• • • •

•

•
•

• λ = (5, 1). X(5,1) has a singularity which is minimally resolved by the mass deformation.

6 ⊕

4 ⊕

2 ⊕

•

•

•

A4

A2

• • • • •
•

• • •
•

•
•

• λ = (6). This is the massless case and X is found amputating the bottom of the crystal
for U(3) with λ = (6) given in Appendix A.1.3.

A.1.3 U(3) with 6 flavours

The stratification of the parameter space is independent of the rank, thus most of the singularity
structure of X agrees with the rank two case. Here we report only on those cases that differ
from the lower rank case.

• λ = (23). The three singularities are related by triality, manifestly inherited by X(23):

3 ⊕ 3 ⊕ 3

1 ⊕ 3 ⊕ 3 3 ⊕ 1 ⊕ 3 3 ⊕ 3 ⊕ 1

1 ⊕ 1 ⊕ 3 3 ⊕ 1 ⊕ 1 1 ⊕ 3 ⊕ 1

1 ⊕ 1 ⊕ 1

•

• • •

• • •

•

A1
A1

A1

A1

A1

A1
A1

A1 A1

A1
A1

A1
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• λ = (4, 2).

5 ⊕ 3

3 ⊕ 3 5 ⊕ 1

1 ⊕ 3 3 ⊕ 1

1 ⊕ 1

•

•

••

•

•

A3 A1

A1 A3A1

A1 A1

• • • •

• •

• •
• •

• • • •

• •

• λ = (6). The singularity C is not resolved and X(6) = C,

7

5

3

1

•

•

•

•

A5

A3

A1

• • • • ••

• • • •

• •
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A.1.4 U(3) with 7 flavours

When the number of hypermultiplets is n = 7, the parameter space
⊔
λ M

(7)
λ is stratified as:

λ=(17) λ=(2,15)

λ=(3,14)

λ=(22,13)

λ=(23,1)

λ=(3,2,12)

λ=(4,13)

λ=(32,1)

λ=(4,2,1)

λ=(5,12)

λ=(3,22)

λ=(6,1)

λ=(4,3)

λ=(5,2)

λ=(7)

codim-0 codim-1 codim-2 codim-3 codim-4 codim-5 codim-6

Partitions of 7 that differ from a partition of 6 by addition of a row of a single box do not add
singular loci, thus do not affect the symplectic foliation and we neglect them. For those λ, in
fact, C is partly resolved into the Coulomb branch of the |λ| = 6 theory.

• λ = (3, 22).

4 ⊕ 3 ⊕ 3

2 ⊕ 3 ⊕ 3 4 ⊕ 1 ⊕ 3 4 ⊕ 3 ⊕ 1

2 ⊕ 1 ⊕ 3 4 ⊕ 1 ⊕ 1 2 ⊕ 3 ⊕ 1

2 ⊕ 1 ⊕ 1

•

• • •

• • •

•

A3

A1

A1

A1

A3
A1

A1

A3 A1

A3
A1 A1
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with corresponding brane configurations

• • •
• •• •

•
• •• •

• • •
• •

• • •

• •

•
• •

•
• •

• • •

•

• λ = (5, 2).

6 ⊕ 3

4 ⊕ 3 6 ⊕ 1

2 ⊕ 3 4 ⊕ 1

2 ⊕ 3

•

•

••

•

•

A4 A1

A1 A4A2

A1 A2

• • • • •

• •

• • •
• •

• • • • •

• •
• • • •

•

• λ = (4, 3).

5 ⊕ 4

3 ⊕ 4 5 ⊕ 2

1 ⊕ 4 3 ⊕ 2

1 ⊕ 2

•

•

••

•

•

A3 A1

A1 A3A1

A1 A1

• • • •

• • •

• •
• • •

• • • •
•

• •
•• • •

•
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• λ = (7).

8

6

4

2

•

•

•

•

A6

A4

A2

• • • • • • •

• • • • •

• • •

•

A.1.5 Balanced Ar quiver of rank 2r

Consider the balanced Ar quiver with gauge group U(2)r and framing w = (2, 0, . . . , 0, 2),

2 2 2 · · · 2 2

and assume r ≥ 4. The crystal X varies along M (4) as follows.

• λ = (14). C is fully resolved and X(14) is resolved into the direct sum of four single-box
tableaux.

• λ = (2, 12). There exist two partial resolution in this case, depending on whether (w1(λ1),w2(λ1)) =
(2, 0) or (1, 1), that is, the two equal masses belong to the same node or are at the opposite
sides of the quiver:(

3 ⊗
)
⊕

(
2 ⊗ 1 ⊗ ··· ⊗ 2

)
⊕

A1 ar

• λ = (2, 2). Again there are two resolved crystals, depending on the assignment of masses.(
3 ⊗

)
⊕
(
⊗ 3

)
⊕
(
⊗ 3

) (
3 ⊗

)
⊕

(
2 ⊗ ··· ⊗ 2

)
⊕
(

2 ⊗ ··· ⊗ 2
)

⊕
(

22 ⊗ ··· ⊗ 2
) (

2 ⊗ ··· ⊗ 2
)
⊕

A1 A1

A1 A1

ar ar

ar ar
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• λ = (3, 1). (
3 ⊗ ··· ⊗ 2

)
⊕

(
1 ⊗ 2 ⊗ ··· ⊗ 2

)
⊕

A1

ar−1

• λ = (4). X(4) = C.

3 ⊗ 1 ⊗ ··· ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ ··· ⊗ 1 ⊗ 3 3 ⊗ 1 ⊗ ··· ⊗ 2 ⊗ 1

1 ⊗ 2 ⊗ ··· ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ ··· ⊗ 1 ⊗ 2

A1 A1

ar−2

ar

A1A1

A.1.6 Unbalanced A3 quiver of rank five with four flavours

Our next example is the unbalanced A3 quiver with gauge group U(1)2 × U(3) and framing
w = (0, 4, 0),

4

1 3 1Q :

As usual, generic masses λ = (14) yield a non-singular resolution X of C and the crystal X(14)

consists of the direct sum of single-box tableaux.

• λ = (2, 12).

(
1 ⊗ 3 ⊗ 1

)
⊕

(
2 ⊗ 1 ⊗ 2

)
⊕

A1

a3

• •• •

• •• •

• •
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• λ = (22). (
1 ⊗ 3 ⊗ 1

)
⊕
(

1 ⊗ 3 ⊗ 1
)

(
2 ⊗ 1 ⊗ 2

)
⊕
(

1 ⊗ 3 ⊗ 1
) (

1 ⊗ 3 ⊗ 1
)
⊕
(

2 ⊗ 1 ⊗ 2
)

(
2 ⊗ 1 ⊗ 2

)
⊕
(

2 ⊗ 1 ⊗ 2
)

⊕
(

1 ⊗ 32 ⊗ 1
) (

1 ⊗ 3 ⊗ 1
)
⊕

⊕
(

2 ⊗ 12 ⊗ 2
) (

21 ⊗ 11 ⊗ 21
)
⊕

A1 A1

a3 a3

A1 A1

A1 A1

a3 a3

a3 a3

The last transitions, indicated by dotted lines, would appear in the crystal X(22) [Q′] for
the balanced quiver

4

2 4 2Q′ :
(A.1)

The unbalanced quiver Q under consideration can be realized on X [Q′] and its crystal is
obtained amputating the dotted transitions.

• λ = (3, 1). (
1 ⊗ 4 ⊗ 1

)
⊕

(
2 ⊗ 2 ⊗ 2

)
⊕

(
1 ⊗ 1 ⊗ 3

)
⊕

(
3 ⊗ 1 ⊗ 1

)
⊕

(
1 ⊗ 2 ⊗ 1

)
⊕

A2

a2a2

A1A1
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with corresponding brane configurations

• • ••

•• ••

••• •• •

••

• λ = (4).

1 ⊗ 5 ⊗ 1

2 ⊗ 3 ⊗ 2

3 ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ 3 3 ⊗ 2 ⊗ 1

1 ⊗ 3 ⊗ 1

1 ⊗ 1 ⊗ 1

A3

A1

A1 A1

A1 A1

A1

A.1.7 Balanced A5 quiver of rank fourteen with four flavours

Consider the family of balanced Ar quivers with gauge group U(2)2 ×U(4)r−2, r ≥ 3,

2 2

4 · · · 42 24 4
(A.2)

The unbalanced quiver studied in Appendix A.1.6 is realized as a union of strata on the Coulomb
branch of the r = 3 member of the family (A.2), given in (A.1). We now discuss another example,
for r = 5:

2 2

42 24 4
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• For λ = (2, 12) the are two resolution patterns, depending on whether or not the two equal
masses belong to the same flavour node,(

1 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 1
)
⊕

(
2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1

)
⊕

(
1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕

(
1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕

(
2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2

)
⊕

(
1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

)
⊕

A1

a3

a3

a5

• For λ = (22) the are again two resolved crystals:(
1 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 1

)
⊕
(

1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 1
)

(
2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1

)
⊕
(

1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 1
) (

1 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 1
)
⊕
(

1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2
)

(
2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1

)
⊕
(

1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2
)

(
1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕
(

1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 1
) (

1 ⊗ 3 ⊗ 1 ⊗ 1 ⊗ 1
)
⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 1
)

(
1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕
(

1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2
) (

2 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 1
)
⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 1
)

(
1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 1
)

A1 A1

A1A1

a3 a3

A1 A1

a3a3

a3 a3

and (
1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1
)

(
2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2

)
⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1
) (

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1
)
⊕
(

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2
)

(
2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2

)
⊕
(

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2
)

(
1
)⊗5

⊕
(

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1
) (

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1
)
⊕
(

1
)⊗5

(
1
)⊗5

⊕
(

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2
) (

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2
)
⊕
(

1
)⊗5

(
1
)⊗5

⊕
(

1
)⊗5

a3 a3

a3a3

a5 a5

a3 a3

a5a5

a5 a5

where we used the shorthand
(

1
)⊗5 ≡ 1 ⊗ ··· ⊗ 1︸ ︷︷ ︸

5

.

51



• For λ = (3, 1) there exists a single crystal X(3,1):(
1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 1

)
⊕

(
2 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 1

)
⊕

(
1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 1

)
⊕

(
2 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 2

)
⊕

(
1 ⊗ 1 ⊗ 2 ⊗ 1 ⊗ 2

)
⊕

(
3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

)
⊕

(
1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 1

)
⊕

A1

a3

a2

A1

a2

a4

a3

A1

• Finally, the non-resolved case λ = (4) shows the richest structure:

1 ⊗ 3 ⊗ 1 ⊗ 3 ⊗ 1

2 ⊗ 1 ⊗ 2 ⊗ 3 ⊗ 1 1 ⊗ 3 ⊗ 2 ⊗ 1 ⊗ 2

2 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2

2 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 2

1 ⊗ 1 ⊗ 1 ⊗ 4 ⊗ 1 1 ⊗ 4 ⊗ 1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 2 2 ⊗ 2 ⊗ 2 ⊗ 1 ⊗ 1

3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 3

1 ⊗ 2 ⊗ 1 ⊗ 1 ⊗ 3 3 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 11 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 1

1 ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

A1 A1

A1A1

A1

a3 a3

a3
A2 A2

a2 a2

a2 a2

A1 A1

A1 A1

A1

a3

a5
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B Induction on the crystal

In this appendix we discuss a limit of the setup of Section 3 together with its interpretation in
type IIB string theory. We work with type A quivers.

The highest weight tableau for a quiver with framing w = (w1,w2, . . . ,wr) is

1 ··· 1 2 ··· 2 ··· r ··· r︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
wr

We then take the limit

T(∞) ≡ lim
w1→∞

lim
w2→∞

· · · lim
wr→∞

1 ··· 1 2 ··· 2 ··· r ··· r

and declare T(∞) to be the highest weight tableau of an Ar crystal. Acting with Kashiwara
operators fj on T(∞) generates the whole GrPSL(r+1) from a top-down perspective. From the
correspondence between tableaux in a crystal and phases of Hanany–Witten brane configura-
tions, detailed in Section 3.3, the top-down approach to GrPSL(r+1) corresponds to send the
number of D5 and D3 branes in each interval to infinity, keeping the number r+1 of NS5 branes
fixed. Then, one starts considering the sequence of all allowed phases in the Hanany–Witten
setup.

In addition, the crystal structure of Section 3 provides a bottom-up approach to GrPSL(r+1).
The starting point is the obvious observation that any highest weight tableau T can be embedded
in a larger tableau with arbitrarily many 0s on the left and arbitrarily many (r + 1)s on the
right,

T = 1 ··· 1 2 ··· 2 ··· r ··· r ∼= ··· 0 0 1 ··· 1 2 ··· 2 ··· r ··· r r
+1

r
+1
···

Then, highest weight tableaux T ′ with wt(T ′) > wt(T ) are generated acting on T with Kashiwara
operators ej . The crucial point is that it is possible to construct the full GrPSL(r+1) in this way
via an inductive limit (cf. the discussion at the end of [25]). For example, the bottom-up
construction of the A1 crystal starting from T = ∅ (left) or T = 1 (right) is:

··· 0 0 1 2 2 ···

··· 0 0 1 1 1 2 2 ···

··· 0 0 1 1 1 1 1 2 2 ···

··· 0 0 2 2 ···

··· 0 0 1 1 2 2 ···

··· 0 0 1 1 1 1 2 2 ···

...
...

which, using (3.1), is an upside-down view of (3.2). For T = 1 2 and A2 root system, we get
instead

··· 0 0 1 2 3 3 ···

··· 0 0 1 1 1 3 3 ··· ··· 0 0 2 2 2 3 3 ···

··· 0 0 1 1 2 2 3 3 ···

··· 0 0 1 1 1 1 2 3 3 ··· ··· 0 0 1 2 2 2 2 3 3 ···
...

...
...
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which agrees with a bottom-up view of the corresponding slice in GrPSL(3).
By the result in Section 3.3, embedding a tableau into a larger one with 0s on the left and

(r + 1)s on the right is the same as including arbitrarily many D5 branes at infinity on the
left of the leftmost NS5 and on the right of the rightmost NS5. This completes the proof of
equivalence of our construction of the affine Grassmannian via Kashiwara crystals with the brane
construction of [25].
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