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Abstract: The TT̄-deformed classical Lagrangian of a 2D Lorentz invariant theory can be
derived from the original one, perturbed only at first order by the bare TT̄ composite field,
through a field-dependent change of coordinates. Considering, as an example, the nonlinear
Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models.
The form of the deformed Lagrangian contains a square-root and is similar but different
from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton
solutions. Contrary to naive expectations, the TT̄-perturbation of nonlinear Schrödinger NLS
with quartic potential does not trivially emerge from a standard non-relativistic limit of the
deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of
irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations
of motion and discuss various interesting aspects of this alternative type of perturbation,
including links with the recent literature.
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1 Introduction

The presence of an irrelevant operator in a quantum field theory is usually not good news, as
far as understanding the high-energy physics of the model is concerned. Trying to reverse the
renormalisation group flow requires the introduction of an infinite number of counterterms
in the Lagrangian. Therefore, perturbing a field theory with irrelevant operators can dras-
tically affect the ultraviolet properties of the model and introduce new fundamental degrees
of freedom at high-energy. In two space-time dimensions, the TT̄ composite operator [1] is
an exception to this rule since this irrelevant field is well defined also at the quantum level.
The TT̄ perturbation is solvable [2, 3], in the sense that physical observables of interest, such
as the S-matrix and the finite-volume spectrum, can be found in terms of the corresponding
undeformed quantities. For the TT̄ operator, we can reverse the renormalisation group trajec-
tory and gain exact information about ultraviolet physics. The outcome is stunning: while the
low-energy physics resembles that of a conventional local quantum field theory at high-energy
the density of states on a cylinder shows Hagedorn growth similar to that of a string theory
[4–6].

A widely studied Lorentz-breaking perturbation is the JT̄ model [7], other integrable
deformations that explicitly break this symmetry were introduced and partially studied in [8].
A framework where TT̄-type perturbations may potentially lead to concrete applications in
fluid dynamics, nonlinear optics and condensed matter physics corresponds to the domain of
non-relativistic nonlinear wave equations.

One of the most-studied models with direct relevance in cold atom experiments is the
nonlinear Schrödinger (NLS) equation. The primary purpose of this paper is to derive the
explicit form of the TT̄ perturbed Lagrangian for a family of NLS equations with arbitrary
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interacting potential. The exact expression of the Lagrangian is surprisingly similar to that
of TT̄-deformed relativistic bosons [3, 9, 10]. A second type of deformation of the NLS model
is obtained performing the non-relativistic limit of the deformed sinh-Gordon theory.

Refs [11, 12] appeared as we were working on this project. These authors discuss various
aspects of deformed 1D non-relativistic quantum particle models with complementary results,
compared to those presented here.

2 Non-relativistic scalar theory: generalities

In this paper we shall consider a class of non-relativistic classical field theories of a complex
scalar field ψ(x), with x = (t, x), described by the hermitian Lagrangian density

L(x) = LK(x)− V , LK(x) =
i

2

(
ψ∗ψ,t − ψψ∗,t

)
−
ψ,xψ

∗
,x

2m
, (2.1)

where ψ∗ denotes the complex conjugate field, ψ,t := ∂tψ and ψ,x := ∂xψ are the derivatives
w.r.t. time and space, and the potential V is a generic function of |ψ|2 = ψψ∗. Setting
V = VNLS := g|ψ|4, for some real constant g, (2.1) becomes the nonlinear Schrödinger (NLS)
Lagrangian density, i.e. L = LNLS.
Let us recall some well-known facts about these non-relativistic Lagrangian models. The
dynamics of the system is described by the Euler-Lagrange equations

∂x

(
∂L
∂ψ,x

)
+ ∂t

(
∂L
∂ψ,t

)
=
∂L
∂ψ

∂x

(
∂L
∂ψ∗,x

)
+ ∂t

(
∂L
∂ψ∗,t

)
=

∂L
∂ψ∗

−→


iψ∗,t =

1

2m
ψ∗,xx − V ′ψ∗

−iψ,t =
1

2m
ψ,xx − V ′ψ

, (2.2)

where V ′ :=
∂V

∂|ψ|2
. The invariance under space and time translations implies the existence of

a Noether current that is the stress-energy tensor, whose components are computed from L
as

Tµν =
∂L
∂ψ,µ

ψ,ν +
∂L
∂ψ∗,µ

ψ∗,ν − δµνL , µ, ν = {t, x} , (2.3)

explicitly,

T tt(x) =
ψ,xψ

∗
,x

2m
+ V , T tx(x) =

i

2
(ψ∗ψ,x − ψψ∗,x) ,

T xt(x) = − 1

2m
(ψ∗,xψ,t + ψ,xψ

∗
,t) , T xx(x) = − i

2

(
ψ∗ψ,t − ψψ∗,t

)
−
ψ,xψ

∗
,x

2m
+ V . (2.4)

Let us define the currents Hµ = Tµt and Pµ = Tµx that fulfil the continuity equations

∂µHµ = ∂µPµ = 0 , (2.5)
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where the quantitiesH := Ht and P := Pt represent the total energy and momentum densities.
The invariance under a global phase rotation implies the existence of the Noether current J
whose components are computed from L as

J µ = −im
(
∂L
∂ψ,µ

ψ − ∂L
∂ψ∗,µ

ψ∗
)
, µ ∈ {t, x} , (2.6)

explicitly,

J t = m|ψ|2 , J x =
i

2

(
ψψ∗,x − ψ∗ψ,x

)
. (2.7)

The current J fulfil the continuity equation

∂µJ µ = 0 , (2.8)

and the quantity M := J t defines the total mass density. In Hamiltonian formalism, we
introduce the Hamiltonian density

H(x) = ψ,tπ + ψ∗,tπ
∗ − L(x) =

ψ,xψ
∗
,x

2m
+ V , (2.9)

where π and π∗ are the conjugated momenta defined by the Legendre transformation

π =
∂L
∂ψ,t

=
i

2
ψ∗ , π∗ =

∂L
∂ψ∗,t

= − i
2
ψ . (2.10)

Clearly, it is not possible to express the time derivative in terms of the conjugated momenta
as the usual Legendre procedure would require. In fact, the last equations reveal the presence
of redundant variables that is a typical feature of constrained Hamiltonian systems. As it is
well-known, the Dirac-Bergmann algorithm allows to elegantly overcome this issue (see, for
example [13]). However, due to the mixing between space and time coordinates, the situation
appears to be much more complicated in the TT̄-deformed model. In the following, we shall
mainly ignore this problem and postpone a rigorous study of the deformed Hamiltonian and
Poisson structure to the future.

3 The deformed Lagrangian

The aim of this section is to derive the Lagrangian density L(x, τ) of the TT̄−deformed theory.
By definition, the latter fulfils the flow equation

∂τL(x, τ) = det [T (x, τ)] , L(x, 0) = L(x) , (3.1)

where T (x, τ) is the deformed stress-energy tensor that descends from formula (2.3) setting
L = L(x, τ). In principle, equation (3.1) can be solved for L(x, τ) by means of a perturbative
expansion around τ = 0 [3]. However, the form of the original stress-energy tensor (2.4)
discourages the application of this approach.
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It is natural to try to obtain the deformed Lagrangian using the same change of variables
found in [14] in the relativistic context and then check if the flow equation is satisfied.1

Following the logic of [8, 14] and [17], the starting point is the identity

A(τ) =

∫
dt dxL(x, τ) =

∫
dt′ dx′ (L(y)− τ det [T (y)]) , (3.2)

where y = (t′, x′) is another set of coordinates related to x = (t, x) via a coordinate transfor-
mation y(x) whose Jacobian J is such that

J−1(y) =

 ∂t

∂t′
∂t

∂x′
∂x

∂t′
∂x

∂x′

 =

(
1 + τ T xx(y) −τ T tx(y)

−τ T xt(y) 1 + τ T tt(y)

)
. (3.3)

Performing the coordinate transformation in (3.2) leads to

L(x, τ) =
L(y(x))− τ det [T (y(x))]

det [J−1(y(x))]
, (3.4)

that allows to reconstruct L(x, τ) from the original Lagrangian and the knowledge of the co-
ordinate transformation.

Remark. The Hessian matrix associated to this change of variables is symmetric on-shell, in
fact

∂

∂x′
∂t

∂t′
= τ∂x′T

x
x(y) = −τ∂t′T tx(y) =

∂

∂t′
∂t

∂x′
,

∂

∂x′
∂x

∂t′
= −τ∂x′T xt(y) = τ∂t′T

t
t(y) =

∂

∂t′
∂x

∂x′
, (3.5)

due to the continuity equations (2.5).

Let us sketch the computation of L(x, τ) starting from formula (3.4). The first step consists
in writing the derivatives ψ,t′ , ψ,x′ and their c.c. (complex conjugates) in terms of ψ,t, ψ,x
and their c.c. by inverting the algebraic systems(

ψ,t′

ψ,x′

)
=
(
J−1(y)

)T( ψ,t
ψ,x

)
,

(
ψ∗,t′

ψ∗,x′

)
=
(
J−1(y)

)T( ψ∗,t
ψ∗,x

)
. (3.6)

A straightforward computation gives

ψ,t′ =
2m (B − S)ψ∗,t + 2τ̃A∗

(
ψ∗,xψ,t − ψ,xψ∗,t

)
2τ(A∗)2

, ψ,x′ =
2m (B − S)

2τA∗
,

ψ∗,t′ =
2m (B − S)ψ,t − 2τ̃A

(
ψ∗,xψ,t − ψ,xψ∗,t

)
2τA2

, ψ∗,x′ =
2m (B − S)

2τA
, (3.7)

1 In [15, 16], a general light-cone gauge approach to TT̄ was developed which can be used to find the deformed
Lagrangians also of non-relativistic models. In [15], the author claims to have obtained the TT̄-deformed NLS
Lagrangian, without presenting explicitly the result. For this reason, we are currently unable to make a direct
comparison with our outcome.
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where we defined

S =

√
B2 − 2τ̃

m
AA∗ , τ̃ = τ(1 + τV ) , (3.8)

and

A = ψ,x +
iτ

2
ψ
(
ψ∗,xψ,t − ψ,xψ∗,t

)
, A∗ = ψ∗,x +

iτ

2
ψ∗
(
ψ∗,xψ,t − ψ,xψ∗,t

)
,

B = 1 +
iτ

2

(
ψ∗ψ,t − ψψ∗,t

)
. (3.9)

Next, we write numerator and denominator of (3.4) in the following way

det
[
J−1(y)

]
=

(
τ̃

τ
− τ

2m
ψ,x′ψ

∗
,x′

)
− τ (L(y)− τ det [T (y)]) ,

L(y)− τ det [T (y)] = L(y)

(
τ̃

τ
− τ

2m
ψ,x′ψ

∗
,x′

)
+
iτ

4

(
ψ∗,x′ψ,t′ − ψ,x′ψ∗,t′

) (
ψ∗ψ,x′ − ψψ∗,x′

)
.

(3.10)

Implementing the transformation (3.7) in the expressions above and after some algebraic
manipulations one gets

L(y(x))−τ det [T (y(x))] =
2i τ̃3

mτ2(B − S)(B + S)2

(
A2ψ∗ψ∗,t−(A∗)2ψψ,t+B

(
ψ∗,xψ,t − ψ,xψ∗,t

)
× (Aψ∗ +A∗ψ)

)
− iτ̃2(B − S)

τ2(B + S)2
(
ψ∗ψ,t − ψψ∗,t

)
+

2τ̃S (S −B(1 + 2τV ))

τ2(B + S)2
. (3.11)

Finally, plugging (3.8) in (3.11) and using the expressions (3.10) in (3.4) one finds

L(x, τ) = − V

1 + τV
+
−2 +B + S

2τ̃
. (3.12)

The form of the Lagrangian (3.12) is similar to its relativistic counterpart (see [3, 9, 10]) and
it would be nice to have some interpretation in terms of topological gravity [18]. As stated at
the beginning of the section, we can easily check that (3.12) fulfils (3.1) using the following
expressions

T xx(x, τ) =
1

τ
− B (B + S)

2τ̃ S
, T xt(x, τ) = − 1

2mS
(
ψ,tA

∗ + ψ∗,tA
)
,

T tx(x, τ) =
τ (B + S)Ttx(x)

2τ̃ S
, T tt(x, τ) =

V

1 + τV
− 1

2τ̃ S

(
B − S − τ̃

m

(
A∗ψ,x +Aψ∗,x

))
,

(3.13)

obtained from (2.3) setting L = L(x, τ). This proves that (3.12) is indeed the TT̄−deformed
non-relativistic Lagrangian density.
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4 Deformed soliton solutions

The knowledge of the coordinate transformation provide a useful tool to obtain classical solu-
tions to the deformed theory without explicitly solving them. In this section, we concentrate
on the NLS theory and derive the TT̄−deformation of some particular soliton solutions. Recall
that the NLS Lagrangian density is

LNLS(x) =
i

2

(
ψ∗ψ,t − ψψ∗,t

)
−
ψ,xψ

∗
,x

2m
− VNLS , VNLS = g|ψ|4 , (4.1)

and the Euler-Lagrange equations associated to it are{
−iψ,t = 1

2mψ,xx − 2g|ψ|2ψ
iψ∗,t = 1

2mψ
∗
,xx − 2g|ψ|2ψ∗

. (4.2)

Starting from a given solution ψ0(x) to (4.2), we can obtain the corresponding TT̄−deformed
solution ψ0(x, τ) by means of the coordinate transformation, using the strategy described in
[14]. Let us summarise here the main idea of the method. We start from the definition of
inverse Jacobian (3.3)

∂t

∂t′
= 1 + τ T xx(y)

∂t

∂x′
= −τ T tx(y)

,


∂x

∂t′
= −τ T xt(y)

∂x

∂x′
= 1 + τ T tt(y)

, (4.3)

and plug the solution ψ0(y) together with its c.c. inside the explicit expressions of the com-
ponents of T (y). In this way, we end up with two systems of partial differential equations
for the unknown functions t(y) and x(y). Integrating these systems we first recover the map
x(y) = (t(y), x(y)) and then we invert it to arrive at y(x) = (t′(x), x′(x)). Finally, plugging
y(x) into the explicit expression of ψ0(y), we obtain the desired deformed solution as

ψ0(x, τ) = ψ0(y(x)) . (4.4)

4.1 The bright soliton

Bright solitons are solutions localized in space that emerge in the regime g < 0. Therefore,
throughout this section we shall fix g = −k, with k ∈ R+. The bright soliton solution has the
following analytic expression

ψ0(y) = η sech (f(y)) exp
{
i
(
κx′ − ωt′

)}
, f(y) = η

√
2mk

(
x′ − vt′

)
, (4.5)

where η ∈ R+ is the amplitude, κ ∈ R is the wave number, ω =
κ2

2m
− kη2 is the dispersion

relation and v =
∂ω

∂κ
=

κ

m
is the velocity of the soliton. It can be easily checked that (4.5)
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together with its c.c. are solutions to (4.2). Plugging (4.5) and its c.c. in (4.3) we arrive at
∂t

∂t′
= 1− κ2η2τ

m
sech2 (f(y))

∂t

∂x′
= κη2τ sech2 (f(y))

, (4.6)


∂x

∂t′
= −κη

2τ

2m
sech2 (f(y))

(
κ2

m
− 2kη2 − 4kη2 tanh2 (f(y))

)
∂x

∂x′
= 1 +

η2τ

2
sech2 (f(y))

(
κ2

m
+ 2kη2 − 4kη2 sech2 (f(y))

) .

The latter systems of differential equations can be integrated for x(y) = (t(y), x(y)) as follows

t(y) = t′ +
κητ√
2mk

tanh (f(y)) ,

x(y) = x′ +
ητ

3
√

2mk

(
−2kη2 sech2 (f(y))− kη2 +

3κ2

2m

)
tanh (f(y)) . (4.7)

where the constants of integration has been chosen in accordance with the initial condition at
τ = 0. To obtain the inverse relation y(x) = (t′(x), x′(x)), we first observe that

|ψ0(y)|2 = η2 sech2 (f(y)) =⇒ f(y) = arcsech
(
|ψ0(y)|
η

)
. (4.8)

Plugging (4.8) into (4.7) and using the property

tanh (arcsech(z)) =
√

1− z2 , −1 ≤ z ≤ 1 ,

we get

t(y) = t′ +
κτ√
2mk

√
η2 − |ψ0(y)|2 ,

x(y) = x′ +
τ

3
√

2mk

(
3κ2

2m
− k

(
η2 + 2|ψ0(y)|2

))√
η2 − |ψ0(y)|2 . (4.9)

Since by construction ψ0(x, τ) = ψ0(y(x)), we have

t′(x) = t− κτ√
2mk

√
η2 − |ψ0(x, τ)|2 ,

x′(x) = x− τ

3
√

2mk

(
3κ2

2m
− k

(
η2 + 2|ψ0(x, τ)|2

))√
η2 − |ψ0(x, τ)|2 . (4.10)

In conclusion, |ψ0(x, τ)| is defined through the following implicit relation

f(x) = arcsech
(
|ψ0(x, τ)|

η

)
−ητ

3

(
3κ2

2m
+ k

(
η2 + 2|ψ0(x, τ)|2

))√
η2 − |ψ0(x, τ)|2 . (4.11)

Driven by the analogy with the relativistic case, we expect that the deformation causes the
emergence of shock-wave singularities in the solution for some specific critical values of τ ,
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(a) (b)

(c)

(d) (e)

Figure 1. The modulus of the TT̄-deformed bright soliton solution ψ0(x, τ) at t = 0 and for different
values of τ . The parameters are chosen as follows: κ = −1/

√
2, η = 2, m = 1 and k = 1. Since

ω = −15/4 < 0, the critical values of τ are τ+crit = 1/17 and τ−crit = −128/225, according to (4.15).

in correspondence of which the solution becomes multi-valued. For these values of τ the
coordinate transformation is not invertible anymore, hence they are defined by the locus

det
(
J−1(y)

)
|ψ(y)=ψ0(y) = 0 . (4.12)

The explicit computation of the determinant of J−1(y) evaluated on the solution ψ0(y) gives

det
(
J−1(y)

)
|ψ(y)=ψ0(y) =

((
1− η2κ2

2m
τ + kη4τ

)
cosh2 (f(y)) +

1

8
cosh (4f(y))− 1

8
− 2kη4τ

)
× sech4 (f(y)) = 1− τ |ψ0(y)|2

(
ω + 2k|ψ0(y)|2

)
, (4.13)

where in the last equality we used (4.8). Since 0 ≤ |ψ0(y)| ≤ η, the values of τ that fulfil
(4.12) is given by the image of the real-valued function

F (z) =
1

z2 (ω + 2kz2)
, 0 ≤ z ≤ η , (4.14)
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that is obtained by solving the equation det
(
J−1(y)

)
= 0 w.r.t. τ . Recall that the parameter

ω is defined as ω =
κ2

2m
− kη2 with m, k, η ∈ R+ and κ ∈ R. An elementary analysis of the

function F reveals that its domain and image are

dom(F ) =


]0; η] , ω > 0

]0; η]−
{√
− ω

2k

}
, ω < 0

, Im(F ) =

{
[τ+crit; +∞], ω > 0

]−∞; τ−crit] ∪ [τ+crit; +∞[ , ω < 0

where
τ+crit =

1

η2 (ω + 2kη2)
, τ−crit = −8k

ω2
. (4.15)

Therefore, the shock-wave phenomenon occurs only for positive τ when ω > 0, and for both
positive and negative sign of τ when ω < 0. The latter situation is similar to the sine-Gordon
breather [14].
It is worth notice that there is a strong resemblance between figures 1 and the plots in [19],
where the shape and time evolution of vortex filaments are associated with soliton solutions
of NLS. This observation suggests that probably the correct framework for the interpretation
of the TT̄-deformed NLS is through an embedding in three space dimensions, as explained
in [19, 20]. We expect that the only effect of the TT̄ is a deformation of the shape of the
filament, without changing the “solitonic surface”. This fact corresponds to the non-relativistic
analogue of what was previously observed in [3] and [14] for deformed massless free bosons
and the sine-Gordon model, respectively.

4.2 The grey soliton

Another typical solution of the NLS equation is the grey soliton (see, for example [21]) that
exists in the regime g > 0. It has the following analytical expression

ψ0(y) =
√
n0

(
i
v

v1
+

√
1− v2

v21
tanh (f(y))

)
e−iµt , f(y) =

x′ − vt′√
2ξ

√
1− v2

v21
, (4.16)

where, in the cold-atom framework, v ∈ R is the velocity of the soliton, n0 ∈ R+ is the ground-
state density of condensed atoms, µ = 2gn0 ∈ R+ is the chemical potential, v1 =

√
µ/m ∈ R+

is the velocity of the first sound and ξ = 1/
√

2mµ ∈ R+ is the healing length. We shall follow
the same steps of the previous section. Plugging the solution ψ0(y) together with its c.c. in
(4.3) we get 

∂t

∂t′
= 1− gn20τ +

mv2τ

2g
(µ−mv2) sech2 (f(y))

∂t

∂x′
=
mvτ

2g
(mv2 − µ) sech2 (f(y))

,


∂x

∂t′
=
vτ

2g
(µ−mv2)

(
mv2 + µ sinh2 (f(y))

)
sech4 (f(y))

∂x

∂x′
= 1 + gn20τ −

τ

2g
(µ−mv2)

(
mv2 + µ sinh2 (f(y))

)
sech4 (f(y))

. (4.17)
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The systems (4.17) can be integrated for x(y) = (t(y), x(y)) as follows

t(y) = (1− gn0τ)t′ − vτ

2g

√
mµ−m2v2 tanh (f(y)) ,

x(y) = (1 + gn0τ)x′ +
τ

6gm

√
mµ−m2v2

(
−µ− 2mv2 + (µ−mv2) sech2 (f(y))

)
× tanh (f(y)) . (4.18)

Using the fact that

|ψ0(y)|2 = n0 +
1

2g

(
mv2 − µ

)
sech2 (f(y)) =⇒ f(y) = arcsech

(
2g|ψ0(y)|2 − µ

mv2 − µ

)
,

(4.19)
we get

t(y) =
(
1− gn20τ

)
t′ − mv2τ

2g

√
−1 +

2g

mv2
|ψ0(y)|2 ,

x(y) =
(
1 + gn20τ

)
x′ − vτ

3g

(
mv2 + g|ψ0(y)|2

)√
−1 +

2g

mv2
|ψ0(y)|2 . (4.20)

In conclusion, the inverse relation y(x) = (t′(x), x′(x)) yields

t′(x) =
1

1− gn20τ

(
t+

mv2τ

2g

√
−1 +

2g

mv2
|ψ0(x, τ)|2

)
,

x′(x) =
1

1 + gn20τ

(
x+

mv3τ

3g

(
1 +

g

mv2
|ψ0(x, τ)|2

)√
−1 +

2g

mv2
|ψ0(x, τ)|2

)
. (4.21)

Thus, also in this case the deformed solution is defined through an implicit relation as

1

2
√
ξ

√
1− v2

v21

(
x

1 + gn20τ
− vt

1− gn20τ

)
= arcsech

(
2g|ψ0(x, τ)|2 − µ

mv2 − µ

)
− 1

2
√
ξ

√
1− v2

v21

× mv3τ

g

√
−1 +

2g

mv2
|ψ0(x, τ)|2

(
mv2 + g|ψ0(x, τ)|2

3mv2
(
1 + gn20τ

) − 1

2
(
1− gn20τ

)) . (4.22)

Following the same logic adopted in the previous section for the bright soliton, it is possible
to find the critical values of τ where the solution becomes multi-valued. However, the com-
putation and explicit outcomes are quite involved and not particularly enlightening, thus we
decided to omit them.
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(a) (b)

(c)

(d) (e)

Figure 2. The modulus of the TT̄-deformed Peregrine’s soliton solution ψ0(x, τ) for different values
of τ . The parameters are chosen as follows: m = 1 and k = 1.

4.3 The Peregrine’s soliton

As in the case of the bright soliton, we shall set g = −k with k ∈ R+. The Peregrine’s soliton
has the following analytical expression

ψ0(y) =
1√
2k

(
1− 4(1 + 2it′)

1 + 4mx′2 + 4t′2

)
eit

′
. (4.23)

Plugging the solution and its c.c. in (4.3) we get
∂t

∂t′
= 1− τ

(
4
(
1− 4t′2 + 4mx′2

)
k (1 + 4t′2 + 4mx′2)2

− 1

4k

)
∂t

∂x′
=

32mτ t′x′

k (1 + 4t′2 + 4mx′2)2

, (4.24)
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∂x

∂t′
= +32τ t′x′

16t′4 + 8t′2
(
5 + 4mx′2

)
+
(
3− 4mx′2

)2
k (1 + 4t′2 + 4mx′2)4

∂x

∂x′
= 1− τ

(
16t′4 + 8t′2

(
5 + 4mx′2

)
+
(
3− 4mx′2

)2)2 − 1024mx′2
(
1 + 4t′2

)
4k (1 + 4t′2 + 4mx′2)4

. (4.25)

Integrating the latter systems for x(y) = (t(y), x(y)) we get

t(y) = t′ − τ t′

4k

(
−1 +

16

1 + 4t′2 + 4mx′2

)
,

x(y) = x′ − τ x′

12k

(
3 +

256
(
1 + 4t′2

)
(1 + 4t′2 + 4mx′2)3

− 64

(1 + 4t′2 + 4mx′2)2
+

48

1 + 4t′2 + 4mx′2

)
.

(4.26)

Unfortunately, it is not possible to invert the coordinate transformation, therefore, we resort
to numerical integration. Figure 2 shows the deformation of the Peregrine soliton for different
values of τ . As for the bright and grey solitons, described in sections 4.1 and 4.2, we see the
appearance of the “wave-breaking” phenomena, resembling that observed in relativistic models
[10, 14, 22].

5 Non-relativistic limit of TT̄-deformed sinh-Gordon

As extensively discussed in [23–26], the non-relativistic limit (NR) of the φ4 or the sinh-
Gordon (sh-G) models correspond to the NLS theory with quartic potential. This limit can
be consistently performed not only at the level of the classical action and equations of motion,
but also for various quantum objects of physical interests, such as the Thermodynamic Bethe
Ansatz and the form factors.

Therefore, the naive expectation is that the TT̄-deformed NLS theory should be easily
obtainable from the NR limit of the deformed sinh-Gordon model. We consider the sinh-
Gordon theory with background metric η = diag

(
c2,−1

)
and action

Ash-G =

∫
dt dx

√
|det η| Lsh-G(x) =

∫
c dt dxLsh-G(x) , (5.1)

where the Lagrangian density is

Lsh-G(x) =
1

2
ηµν∂µφ∂νφ− Vsh-G =

1

2

(
φ2,t
c2
− φ2,x

)
− Vsh-G , µ, ν ∈ {0, 1} , (5.2)

Vsh-G = V =
m2c2

ḡ2
(cosh(ḡφ)− 1) , (5.3)

with φ,t = ∂0φ and φ,x = ∂1φ. The corresponding deformed Lagrangian density is [9, 10]

Lsh-G(x, τ) = − V

1− τV
+

1

2τ̃

1−

√√√√1− 2τ̃

(
φ2,t
c2
− φ2,x

) , τ̃ = τ(1− τV ) , (5.4)
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that fulfils the flow equation

∂τLsh-G(x, τ) = c2 det [Tsh-G(x, τ)] , (5.5)

where the c2 factor comes from |det η|. In analogy with [25], we shall consider a double scaling
limit such that

c→∞ , ḡ → 0 with β = ḡc = const. .

Therefore, the sinh-Gordon potential admits the following expansion around ḡ = 0

V (φ) =
m2c2

2
φ2 +

1

4!
β2m2φ4 +O(c−2) , (5.6)

where the powers of φ higher than φ4 are suppressed. Following [23–25], we parametrize the
field φ as

φ(x) =
1√
2m

(
eimc

2tψ∗(x) + e−imc
2tψ(x)

)
, (5.7)

where ψ describes only the non-relativistic degrees of freedom. Using (5.7), the kinetic and
the potential terms of the sinh-Gordon Lagrangian become

V =
mc2

2
|ψ|2 +

β2

16
|ψ|4 +

∑
n∈{±2,±4}

On(x) einmc
2t +O(c−2) , (5.8)

φ2,t
c2
− φ2,x = −

ψ∗,xψ,x

m
+ i(ψ∗ψ,t − ψψ∗,t) +mc2|ψ|2 +

∑
n∈{±2}

O′n(x) einmc
2t +O(c−2)

= 2LK(x) +mc2|ψ|2 +
∑

n∈{±2}

O′n(x) einmc
2t +O(c−2) , (5.9)

where On(x) and O′n(x) collect products of powers of ψ and ψ∗ while LK(x) is the kinetic
part of the non-relativistic Lagrangian density L(x), as per (2.1). Notice that terms involving
exponential factors einmc2t oscillate so fast as c→∞ that average to zero when integrated over
any small but finite time interval. We shall drop these terms taking a suitable time average
denoted by the symbol 〈?〉. It follows that

〈V 〉 =
mc2

2
|ψ|2 +

β2

16
|ψ|4 +O(c−2) ,

〈
φ2,t
c2
− φ2,x

〉
= 2LK(x) +mc2|ψ|2 +O(c−2) , (5.10)

Plugging (5.8) and (5.9) in (5.2) and taking the time average, we obtain the result of [25]

〈Lsh-G(x)〉 =
1

2

〈
φ2,t
c2
− φ2,x

〉
− 〈V 〉 = LNLS(x) +O(c−2) −→

c→∞
LNLS(x) , (5.11)

where LNLS(x) is the nonlinear Schrödinger Lagrangian density (4.1) with coupling constant
g = β2/16, explicitly

LNLS(x) =
i

2

(
ψ∗ψ,t − ψψ∗,t

)
−
ψ,xψ

∗
,x

2m
− β2

16
|ψ|4 . (5.12)

Such non-relativistic limit of the sinh-Gordon model is uniquely defined. However, the same
procedure appears to be ambiguous when applied to the TT̄−deformed case.
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5.1 Mean Field approach

In this section we shall discuss one among the many possible ways to perform the NR limit
in the deformed sinh-Gordon model. Before we begin, notice that the factor c2 in (5.5) is
problematic when taking the NR limit. Therefore, we reabsorb it by rescaling τ as τ/c2 in
(5.4). Given this, the idea is to apply a Mean Field (MF) approach which consists in taking
the average of the potential and kinetic terms appearing in (5.4) as follows

〈Lsh-G(x, τ)〉MF = − 〈V 〉
1− τ

c2
〈V 〉

+
1

2τ
c2

(
1− τ

c2
〈V 〉
)
1−

√√√√1− 2τ

c2

(
1− τ

c2
〈V 〉

)〈φ2,t
c2
− φ2,x

〉 .

(5.13)
then take the limit c→∞. This procedure is somehow justified, a-posteriori, by the simplicity
of the final outcome. Let us consider separately the various terms in expression (5.13), namely

− 〈V 〉
1− τ

c2
〈V 〉

= −c2
m
2 |ψ|

2

1− τ m2 |ψ|2
−

β2

16 |ψ|
4(

1− τ m2 |ψ|2
)2 +O(c−1) , (5.14)

and

1
2τ
c2

(
1− τ

c2
〈V 〉
)
1−

√√√√1− 2τ

c2

(
1− τ

c2
〈V 〉
)〈φ2,t

c2
− φ2,x

〉
= c2

m
2 |ψ|

2

1− τ m2 |ψ|2
+
LNLS(x)

1− τm|ψ|2
+

β2

16 |ψ|
4(

1− τ m2 |ψ|2
)2 +O(c−1) , (5.15)

where LNLS(x) is as per (5.12). Combining (5.14) and (5.15), the terms proportional to c2

cancel in the sum and lead to

〈Lsh-G(x, τ)〉MF =
LNLS(x)

1− τm|ψ|2
+O(c−1) −→

c→∞

LNLS(x)

1− τm|ψ|2
= LNR(x, τ) . (5.16)

This is an unexpected result, since (5.16) is very different from the TT̄-perturbed Lagrangian
derived in section 3. Although the question is certainly open, we think it is unlikely that the
Lagrangian LNR(x, τ) corresponds to an integrable deformation of NLS.

The corresponding flow equation is

∂τLNR(x, τ) =
m|ψ|2

1− τm|ψ|2
LNR(x, τ) . (5.17)

The Hamiltonian density is

HNR(x, τ) = πψ,t + π∗ψ∗,t − LNR(x, τ) =
HNLS(x)

1− τm|ψ|2
, (5.18)

where HNLS(x) =
ψ,xψ

∗
,x

2m
+
β2

16
|ψ|4 and the conjugated momenta are

π =
∂LNR(x, τ)

∂ψ,t
=

i
2ψ
∗

1− τm|ψ|2
, π∗ =

∂LNR(x, τ)

∂ψ∗,t
=

− i
2ψ

1− τm|ψ|2
. (5.19)
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It is easy to show that all components of the stress-energy tensor rescale in the same way:

TNR(x, τ) =
TNLS(x)

1− τm|ψ|2
, (5.20)

where TNLS(x) is as per (2.4) with L = LNLS. As it is customary in the integrable model
framework, it is convenient to continue working with the field pair (ψ,ψ∗). The equal-time
Poisson bracket of the deformed theory is

{ψ(x), ψ∗(y)} = −i (1− τmψ(x)ψ∗(x))2 δ(x− y) . (5.21)

where x and y denote two different spatial points at fixed time and δ(x) is the Dirac delta. In
fact, using the former definition it is possible to verify that formula

ψ∗,t(x) = {ψ∗(x), HNR(τ)} , HNR(τ) =

∫
dx HNR(x, τ) , (5.22)

together with its c.c. yield the deformed EoMs. Let us briefly sketch the computation. From
the definition (5.18) and using Leibnitz rule we have

{ψ∗(x), HNR(τ)} =

∫
dy

{
ψ∗(x),

HNLS(y)

1− τmψ(y)ψ∗(y)

}
=

∫
dy

1

1− τmψ(y)ψ∗(y)
{ψ∗(x),HNLS(y)}+HNLS(y)

{
ψ∗(x),

1

1− τmψ(y)ψ∗(y)

}
.

(5.23)

Next, we manipulate separately the Poisson brackets in the second line of the latter expression,
obtaining

{ψ∗(x),HNLS(y)} =
ψ∗,y(y)

2m
{ψ∗(x), ψ,y(y)}+ 2g ψ(y) (ψ∗(y))2 {ψ∗(x), ψ(y)}

= ψ∗,y(y) (1− τmψ(y)ψ∗(y))
( i

2m
(1− τmψ(y)ψ∗(y)) δ,y(x−y)− iτ ∂y (ψ(y)ψ∗(y)) δ(x−y)

+ 2ig ψ(y)ψ∗(y) (1− τmψ(y)ψ∗(y)) δ(x− y)
)
, (5.24)

and {
ψ∗(x),

1

1− τmψ(y)ψ∗(y)

}
=

ψ∗(x),
∑
n≥0

(τmψ(y)ψ∗(y))n


=
∑
n≥0

(τm)n {ψ∗(x), (ψ(y)ψ∗(y))n} =
1

ψ(y)
{ψ∗(x), ψ(y)}

∑
n≥0

n (τmψ(y)ψ∗(y))n

= iτmψ∗(y) δ(x− y) , (5.25)

where we used the fact that

{ψ,x(x), ψ∗(y)} = −i (1− τmψ(x)ψ∗(x))2 δ,x(x− y)

+ 2imτ ∂x (ψ(x)ψ∗(x)) (1− τmψ(x)ψ∗(x)) δ(x− y) , (5.26)
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that follows immediately from (5.21). Finally, plugging (5.24) and (5.25) into (5.23) we get

{ψ∗(x), HNR(τ)} = −iτ ψ∗,x(x) ∂x (ψ(x)ψ∗(x)) + 2ig ψ(x) (ψ∗(x))2 (1− τmψ(x)ψ∗(x))

+ iτmψ∗(x)HNLS(x) +
i

2m

∫
dy ψ∗,y(y) (1− τmψ(y)ψ∗(y)) δ,y(x− y) . (5.27)

Integrating by parts the integral in (5.27)

i

2m

∫
dy ψ∗,y(y) (1− τmψ(y)ψ∗(y)) δ,y(x− y) = − i

2m
ψ∗,xx (1− τmψ(x)ψ∗(x))

+
iτ

2
ψ∗,x(x) ∂x (ψ(x)ψ∗(x)) , (5.28)

we find

ψ∗,t = {ψ∗(x), HNR(τ)} = − i

2m
ψ∗,xx (1− τmψ(x)ψ∗(x))− iτ

2
ψ(x)

(
ψ∗,x(x)

)2
+ 2ig ψ(x) (ψ∗(x))2

(
1− τm

2
ψ(x)ψ∗(x)

)
, (5.29)

that is equivalent to(
iψ∗,t −

1

2m
ψ∗,xx + 2gψ(ψ∗)2 − τm

(
gψ2(ψ∗)3 +

1

2m
ψ(ψ∗,x)2 − 1

2m
|ψ|2ψ∗,xx

))
= 0 . (5.30)

The same EoM can be directly derived from the Lagrangian (5.16), however the knowledge of
the Poisson structure (5.21) should help in the exploration of the hidden integrability structure
and for the direct quantisation of this model. Summing up (5.30) with its complex conjugate,
we can derive the deformed continuity equation

∂t

(
m|ψ|2

1− τm|ψ|2

)
+ ∂x

(
i

2

ψψ∗,x − ψ∗ψ,x
1− τm|ψ|2

)
= 0 , (5.31)

from which we read off the components of the deformed conserved U(1) current

Jt(x, τ) =
m|ψ|2

1− τm|ψ|2
, Jx(x, τ) =

i

2

ψψ∗,x − ψ∗ψ,x
1− τm|ψ|2

. (5.32)

Splitting the complex function ψ in its modulus and phase as

ψ =
√
ρeiϕ , v = 1

m∂xϕ , (5.33)

we can recast equation (5.31) in the form

∂t

(
ρ

1− τmρ

)
+ ∂x

(
ρ v

1− τmρ

)
= 0 . (5.34)

While we were working on this project the paper [11] appeared on ArXiv. Following a quite
different logic, using the ideas of a change of the metric and generalized hydrodynamics the
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authors of [11] also arrived to (5.34). At this point, it is clear that the non-relativistic limit’s
outcome depends on the stage chosen to perform the “small-time interval” average procedure.
We have not yet identified a guiding principle to discern between the various options. Let us
end this section with a concluding remark. If we parametrize the field φ as per (5.7), employ
the notion of time-average as described in the previous section and finally take the c → ∞
limit we obtain the following relation

det [〈Tsh-G(x)〉] =
1

2
εµρενσ〈Tµνsh-G(x)〉〈T ρσsh-G(x)〉 −→

c→∞
−εµνJ µ(x)Pν(x) , (5.35)

where Pµ and J µ are the conserved currents associated to the nonlinear Schrödinger La-
grangian density (5.12). Thus, the first order truncation of (5.4) becomes, upon rescaling τ
as τ/c2,

〈Lsh-G(x)〉+ τ det [〈Tsh-G(x)〉] +O(τ2) −→
c→∞

LNLS(x)− τεµνJ µ(x)Pν(x) +O(τ2) . (5.36)

Notice that the RHS of the latter formula is the first order truncation of the solution to the
flow equation

∂τL(x, τ) = −εµνJ µ(x, τ)Pν(x, τ) , (5.37)

with initial condition L(x, 0) = LNLS(x), that is, the Lagrangian density associated with the
hard-rod deformation of the nonlinear Schrödinger model, recently studied in [27]. It would
be important to understand if there is a scheme to reconstruct the flow equation (5.37) from
the TT̄ flow of the sinh-Gordon model.

6 Conclusions

The nonlinear Schrödinger equation plays a significant role in various physics branches, ranging
from classical hydrodynamics, superfluidity, and nonlinear optics.

In this paper we have identified the TT̄-deformed NLS Lagrangian, with generic interact-
ing potential, and studied particular solutions of the corresponding equations of motion.

Compared to the unperturbed case, the deformed soliton solutions exhibit the phenomena
of bifurcations or wave breaking. Several aspects of this model deserve further study. First
of all, we would like to fully develop the Hamiltonian approach, which is made complicated
by the presence, already in the undeformed theory, of a second class Hamiltonian constraint.
From the fact that the finite volume/temperature spectrum of TT̄-like perturbed models
fulfils Burgers-type equations [2, 3, 7, 28], we know that there must be a way to overcome the
technical problems caused by the highly non-trivial evolution of the Poisson bracket structure
under the TT̄-perturbation. Various quantum aspects of this deformation are discussed in the
nice recent work [12].

The second type of deformation, described in section 5, is also interesting. In many
respects, it leads to a simpler system compared to the “standard” TT̄ perturbation of section
3. For both perturbations, it would be essential to investigate the connection with the theory
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of vortex filaments, as discussed in [19] (see also [20]). Further work in this direction may shed
some light on the physical interpretation of these systems and their possible interpretation
as non-relativistic variants of the Nambu-Goto model. Finally, it is necessary to stress that
under specific conditions, the NLS equation represents a model for solitons and rogue waves in
hydrodynamics and nonlinear optics [29, 30]. Interestingly in these laboratory setups, one can
exchange the role between space and time coordinates and even describe stationary optical
beams where both t and x correspond to physical space coordinates. This is for example
achieved in planar glass wave-guides with Kerr non-linearity [30, 31]. The possibility to build
these type of devices gives us some hope for future realisations of “TT̄-optical systems” related,
for example, to the simple EoM (5.30).

Furthermore, it would be important to explore possible connections between the results
presented here and in [12] and the corresponding deformations of the two-dimensional Yang-
Mills-Higgs model [32], as recently suggested by [33] as a natural generalization of the TT̄ and
q-deformed Yang-Mills setups of [10, 33–35].

Finally, concerning the extension to other non-Lorentz invariant models, it would be nice
to study the TT̄-deformed KdV equation, the classical Lagrangian, the corresponding soliton
solutions, and the link with the ODE/IM correspondence [36–39]. Understanding, at a deeper
level, the TT̄-like deformations of quantum spin-chains [40, 41], possibly within the Quantum
Spectral Curve framework of AdS/CFT [42–47], is also an unexplored avenue that might lead
to unexpected and exciting discoveries.

Note added 1: While we were already at the writing stage of this paper, we became aware
of the work [27] by Dennis Hansen, Yunfeng Jiang and Jiuci Xu, which has some overlap with
ours. In particular, on the dynamical change of coordinates and the TT̄-deformed Lagrangian
described in section 3.
Note added 2: We thank Sergey Frolov for informing us that, in collaboration with Chantelle
Esper, obtained the one-soliton solution of the TT̄-deformed NLS equation [48] using the light-
cone gauge approach of [15].
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