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Abstract. A finitely presented group Γ is called flawed if Hom(Γ, G)//G deformation re-
tracts onto its subspace Hom(Γ,K)/K for reductive affine algebraic groups G and maximal
compact subgroups K ⊂ G. After discussing generalities concerning flawed groups, we show
that all finitely generated groups isomorphic to a free product of nilpotent groups are flawed.
This unifies and generalizes all previously known classes of flawed groups. We also provide
further evidence for the authors’ conjecture that RAAGs are flawed. Lastly, we show direct
products between finite groups and some flawed group are also flawed. These latter two
theorems enlarge the known class of flawed groups.
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1. Introduction

Let Γ be finitely presented group generated by r elements. Let G be a connected, reductive,
affine algebraic group over C; a reductive C-group for short. G acts by conjugation on the set
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2 C. FLORENTINO AND S. LAWTON

of homomorphisms Hom(Γ, G). We may consider Hom(Γ, G) as a subset of Gr by identifying
homomorphisms with their evaluations at the generators of Γ. This simultaneously gives
Hom(Γ, G) the structure of an affine algebraic set, and an analytic topology over C (which
we assume throughout the paper).

Call a homomorphism in Hom(Γ, G) polystable if it has a closed conjugation orbit, and let
Hom(Γ, G)∗ be the subspace of polystable homomorphisms. The G-character variety of Γ is
the quotient space:

XΓ(G) := Hom(Γ, G)∗/G,

with respect to the conjugation action. By [FL14, Theorem 2.1], XΓ(G) is homeomorphic (in
the analytic topology) to the Geometric Invariant Theory (GIT) quotient Hom(Γ, G)//G, and
so XΓ(G) inherits a natural algebraic structure. It is also homotopic to the non-Hausdorff
quotient Hom(Γ, G)/G by [FLR17, Proposition 3.4].

Inspired by [BC01], in [FL09] the authors show that XΓ(G) strong deformation retracts to
XΓ(K) when Γ is a finitely generated free group, and K is a maximal compact in G. Later,
in [CFLO16b, CFLO16a] this result was extended to the case when G is real reductive. In
[FL14] the same theorem is shown to hold when Γ is a finitely generated abelian group.
Generalizing the abelian case, in part by combining methods used in [FL09] and [FL14], the
result is also shown to be true for all finitely generated nilpotent groups Γ in [Ber15]. On
the other hand, whenever Γ is the fundamental group of a closed orientable surface of genus
g ≥ 2 (called a hyperbolic surface group henceforth) such a deformation retraction (indeed,
even a homotopy equivalence) is impossible, as follows from [BF11, FGN19].

With these examples in mind, following the suggestions in [FL09], we ask:

Question. What conditions on Γ allow for strong deformation retractions of XΓ(G) to XΓ(K)
for all reductive C-groups G with maximal compact K ⊂ G?

We call such groups Γ flawed.1 When such a deformation retraction does not exist for any
non-abelian G, like hyperbolic surface groups, we call the group Γ flawless.

1.1. Summary of Results. In Section 2 we prove a general (necessary and sufficient) cri-
terion for flawedness (Theorem 2.11). Thereafter, we prove our first main theorem (Theorem
4.5). This theorem, although an immediate corollary of the main result in [Ber15] and [FL13,
Corollary 4.10] is worth highlighting as it unifies all known cases of flawed groups and brings
together the circle of ideas used in [FL09, FL14, Ber15].

Theorem A. Let Γ be a finite presentable group isomorphic to a free product of nilpotent
groups. Then Γ is flawed.

In particular, PSL(2,Z) is flawed.
Motivated by work in [PS13], in [FL14] the authors conjectured that all right angled Artin

groups (RAAGs) with torsion are flawed.2

As another corollary of Theorem A, we see that free products of cyclic groups (with or
without torsion) are flawed, giving further evidence for the conjecture that all RAAGs with
torsion are flawed.

1The name comes from the first two letters of the first named author and the second two letters of the
second named author.

2The usual definition of a RAAG does not allow torsion, which is why we say “with torsion” to allow for
elements to have finite order. Precisely, these are graph products of cyclic groups.
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We then turn our attention to more general RAAGs and prove that in some cases they
are flawed. More precisely, our second main theorem (Theorems 5.7 and 5.14) is this:

Theorem B. Let Γ be a star-shaped RAAG (see Definition 5.2), then Γ is flawed. Moreover,
if Γ is a connected RAAG, there is a distinguished irreducible component X∗Γ(G) ⊂ XΓ(G)
such that, for every reductive C-group G with maximal compact subgroup K, X∗Γ(G) strong
deformation retracts to X∗Γ(K) := XΓ(K) ∩ X∗Γ(G).

If there is always such a distinguished irreducible component X∗Γ(G) that strong deforma-
tion retracts to X∗Γ(K) as in Theorem B, then Γ will be called special flawed (see Section 3).
Also in Section 3, we define the notion of G-flawed, allowing for a more nuanced discussion
of flawedness (see Theorems 3.6, 3.12 and 3.16).

In the penultimate Section 6, we prove our third main theorem (Theorems 6.3 and 6.2)
which gives classes of flawed groups that do not fit into either of the aforementioned classes
of flawed groups described in Theorems A and B. Let Fr denote a free group of rank r ∈ N.

Theorem C. Let F be a finite group, Γ1
∼= F × Fr and Γ2

∼= F × N where N is a finitely
generated nilpotent group. Then Γ1 is flawed, and Γ2 is special flawed.

In the final Section 7, we discuss questions and conjectures for further research.

1.2. Philosophy. The guiding philosophy of this paper is that quantifying over the geomet-
ric structure defining character varieties (the Lie group G) gives group-theoretic properties
about Γ, and such persistent structure should be understood as a general feature in (geomet-
ric) group theory. In short, the topology and geometry of the collection of representations
of a group Γ is an organizing principle for classifying and distinguishing such groups.

A well-known example of this philosophy is that Kähler groups determine uniform singu-
larity types in character varieties [GM88]. An explicit (recent) application of the concept of
flawed groups discussed in this paper is [BHJL21, Proposition 2.4]. This latter result uses the
notion of flawed groups to prove that if G-character varieties of orientable surface groups are
isomorphic, then the Euler characteristic of the underlying surfaces are equal. Flawedness is
used to distinguish open surfaces from closed surfaces (which dimension alone cannot do).

Acknowledgments. Lawton was supported by a Collaboration Grant from the Simons
Foundation (#578286), and Florentino was supported by CMAFcIO (University of Lisbon),
and the project QuantumG PTDC/MAT-PUR/30234/2017, FCT Portugal. We thank Henry
Wilton and Lior Silberman for helpful comments. We also thank Maxime Bergeron for
suggesting Lemma 5.16.

2. A Numerical Criterion for Flawed Groups

Let Γ be a finitely presentable group. Assume G is a reductive C-group (a connected
reductive affine algebraic group over C). Then there exists a faithful representation of G
and so we may assume G ⊂ SL(n,C) for some n. Moreover, we can arrange for a maximal
compact subgroup in G, denoted K, such that K ⊂ SU(n). As in the introduction, XΓ(G) =
Hom(Γ, G)//G and XΓ(K) = Hom(Γ, K)/K are the corresponding character varieties of Γ.
By [FL13, Proposition 4.5], there is a natural inclusion of CW complexes:

(2.1) iG : XΓ(K)→ XΓ(G).

We adopt the following standard terminology. By a strong deformation retraction (SDR)
we mean an inclusion ι : Y ↪→ X of topological spaces such that the identity map idX is
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homotopic (relative to Y ) to a retract r : X → Y (that is, r ◦ ι = idY ). We also say “Y is a
strong deformation retract of X,” when such a SDR ι : Y → X exists.

Definition 2.1. We say that Γ is flawed if iG (2.1) is a SDR for all G. We say that Γ is
flawless if iG is not a SDR for any non-abelian G.

Let us list a number of examples which are mostly results from previous work.

Example 2.2. All finite groups are flawed. This is an immediate consequence of the following
stronger fact in this simple case.

Proposition 2.3. If Γ is a finite group, then iG : XΓ(K)→ XΓ(G) is a homeomorphism.

Proof. This is a corollary of many well known facts. For completeness, we provide an elemen-
tary proof. Let Γ be finite. Then each ρ ∈ Hom(Γ, G) has finite image and so is polystable
and thus XΓ(G) = Hom(Γ, G)/G. Also, since the image ρ(Γ) is compact it is contained in a
maximal compact subgroup of G. Fix a maximal compact K in G. Since all maximal com-
pact subgroups are conjugate, for every ρ ∈ Hom(Γ, G) there exists g ∈ G so gρ(Γ)g−1 ⊂ K.
Thus, iG is actually surjective, and hence a homeomorphism (since XΓ(K) is compact). �

Example 2.4. Finitely generated free groups [FL09] are flawed. This was the first example
of this general phenomenon.

Example 2.5. Finitely generated abelian groups [FL14] are flawed. Later, it was shown
that finitely generated nilpotent groups [Ber15] are flawed. Also, virtually nilpotent Kähler
groups [BF15] are flawed (this includes finite groups).

Remark 2.6. As shown in the Appendix of [Ber15], there are examples of finitely generated
nilpotent Γ and non-reductive C-groups G so that XΓ(G) is not homotopic to XΓ(K) where
K is a maximal compact in G (in fact they do not necessarily have the same number of
connected components). So working with the class of reductive groups G is necessary in the
definition of flawed.

Example 2.7. A hyperbolic surface group Γ (the fundamental group of a closed orientable
surface Σ of genus g ≥ 2) is flawless. This follows from Theorems 3.15 and 3.12 in [FGN19],
together with the fact that XΓ(G) is homeomorphic to the moduli space of G-Higgs bundles
of trivial topological type over a Riemann surface with underlying topological surface Σ (see
also Remark 2.8 below).

Remark 2.8. When Γ is the fundamental group of a Kähler manifold Σ, XΓ(G) is home-
omorphic to MΣ(G), the moduli space of G-Higgs bundles over Σ with vanishing Chern
classes; this is one instance of the so-called non-abelian Hodge correspondence. Likewise,
XΓ(K) is homeomorphic to the moduli space of flat holomorphic principal G-bundles over
Σ; denote it by NΣ(G). In general, MΣ(G) is a partial compactification of the cotangent
bundle T ∗(NΣ(G)), which deformation retracts to NΣ(G). However, one generally expects
the boundary divisors in the partial compactification to change the homotopy type of these
moduli spaces. So if this does not happen, one may be justified in saying that Γ has a deficit.
This gives another point-of-view about the name “flawed.”

Using Kempf-Ness Theory (see [Nee85, Sch89, KN79]), and Whitehead’s Theorem ([Hat02,
Page 346], [Whi49]), allows one to obtain a certain “numerical” criterion for flawedness. The
setup is as follows.
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Let G be reductive C-group with maximal compact subgroup K, V an affine variety with
a rational action of G, and V//G := Specmax

(
C[V ]G

)
the (affine) GIT quotient. By [Kem78,

Lemma 1.1], we may assume V is equivariantly embedded as a closed subvariety of a (finite
dimensional) C-vector space V, via a representation G→ GL(V).

Let 〈 , 〉 be a K-invariant Hermitian form on V with norm denoted by || ||. Define, for any
v ∈ V the mapping pv : G→ R by g 7→ ||g · v||2. It is shown in [KN79] that any critical point
of pv is a point where pv attains its minimum value. Moreover, the orbit G · v is closed and
v 6= 0 if and only if pv attains a minimum value.

The Kempf-Ness set is the set KN of critical points {v ∈ V ⊂ V | (dpv)1 = 0}, where
1 ∈ G is the identity. Since the Hermitian norm is K-invariant, the Kempf-Ness is stable
under the action of K. The following theorem is proved in [Sch89] making reference to
[Nee85].

Theorem 2.9 (Schwarz-Neeman). The composition KN ↪→ V → V//G is proper and induces
a homeomorphism KN/K → V//G where V//G has the analytic topology. Moreover, KN ↪→
V is a K-equivariant strong deformation retraction.

In our setting, V is Hom(Γ, G) and G acts by conjugation. Choosing r generators for Γ,
we first embed:

Hom(Γ, G) ⊂ Gr ⊂ V,
where V is an affine space where the conjugation action of G extends, and Hom(Γ, G) ⊂ V
is a closed G-stable subvariety.

Then, following [CFLO16b, Proposition 4.7], the Kempf-Ness set of Hom(Γ, G) is:

(2.2) KN Γ :=

{
(g1, · · · , gr) ∈ Hom(Γ, G) |

r∑
i=1

[g∗i , gi] = 0

}
,

where g∗ is the conjugate-transpose of g (defined by a Cartan involution), and [g, h] denotes
gh − hg for g, h ∈ G ⊂ V. It also follows from this definition that KN Γ is K-stable under
conjugation, and Hom(Γ, K) ⊂ KN Γ.

We also need the intermediate spaces: YΓ(G) := Hom(Γ, G)/K (which ate also finite CW
complexes). From the Schwarz-Neeman Theorem (Theorem 2.9), we conclude:

Theorem 2.10. XΓ(G) ∼= KN Γ/K and the natural inclusion KN Γ/K ⊂ YΓ(G) is a SDR.

The following result then gives necessary and sufficient conditions for flawedness.

Theorem 2.11. Let η : XΓ(K) → YΓ(G) be the natural inclusion. Then, the following are
equivalent sentences:

(1) Γ is flawed.
(2) η induces isomorphisms πn(XΓ(K)) ∼= πn(YΓ(G)) for all n ∈ N.
(3) The inclusion XΓ(K) ⊂ KN Γ/K induces isomorphisms

πn(XΓ(K)) ∼= πn(KN Γ/K)

for all n ∈ N.

Proof. This essentially follows from ideas in the proof of [CFLO16b, Theorem 4.10].
We make two technical notes. First, by [FL13, Proposition 4.5] the inclusions iG, η, and

XΓ(K) ⊂ KN Γ/K can all be taken to be “cellular”, that is, there exist CW structures
on these spaces such that the inclusions map onto subcomplexes. Second, when considering
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homotopy groups, we always are considering compatible basepoints with respect to the given
inclusions (this is relevant since in this generality character varieties may not be connected).

We prove (3) is equivalent to (2). We have the commutative diagram of inclusions:

XΓ(K)
η
↪→ YΓ(G)

ϕ ↓ ‖
KN Γ/K

ι
↪→ YΓ(G).

By Theorem 2.10, ι induces isomorphisms on all homotopy groups. Since η = ι ◦ ϕ, the
induced homomorphisms in homotopy are η∗ = ι∗ ◦ϕ∗. Thus, ϕ induces isomorphisms on all
homotopy groups if and only if η does.

Now, we show that (1) and (3) are equivalent. Assume that ϕ induces an isomorphism
for all homotopy groups. Then Whitehead’s Theorem ([Hat02, Page 346]) implies that ϕ is
an SDR since ϕ maps onto a subcomplex. The conclusion that Γ is flawed then follows from
the identification KN Γ/K ∼= XΓ(G) in Theorem 2.10.

Conversely, if Γ is flawed, then

πn(KN Γ/K) ∼= πn(XΓ(G)) ∼= πn(XΓ(K)),

for all n. �

Remark 2.12. For a general group Γ (even for a free group) explicitly determining the
Kempf–Ness sets appears to be a very difficult task. Criterion (2) above avoids the deter-
mination of KN Γ, relying only on the topology of the semialgebraic sets XΓ(K) and YΓ(G).
However, the corresponding homotopy groups are also difficult to compute in general.

There is a stronger condition than being flawed that turns out to be sometimes easier to
prove in practice.

Definition 2.13. We will say that Γ is strongly flawed if there exists a K-equivariant
SDR from Hom(Γ, G) to Hom(Γ, K).

Theorem 2.14. If Γ is strongly flawed, it is flawed.

Proof. If Γ is strongly flawed, then there exists a K-equivariant SDR from Hom(Γ, G) onto
Hom(Γ, K) and hence YΓ(G) strong deformation retracts onto XΓ(K). Therefore, the in-
clusion η : XΓ(K) → YΓ(G) determines isomorphisms πn(XΓ(K)) ∼= πn(YΓ(G)). Thus, by
Theorem 2.11, Γ is flawed. �

Remark 2.15. The above theorem, first used in [FL09], has been used to show just about all
known flawed groups are flawed. Indeed, finitely generated free groups [FL09] and finitely
generated nilpotent groups [Ber15] (Examples 2.4 and 2.5) are in fact strongly flawed. The
proof in [FL14] does not establish the condition of strongly flawed; but from [Ber15], and as
a corollary to Theorem 4.5, we now have that finitely generated nilpotent groups are strongly
flawed.

Remark 2.16. Although we will not use it here, it is natural to say that Γ is “weakly flawed”
if πn(XΓ(G)) ∼= πn(XΓ(K)) for all n. The fact that flawed implies weakly flawed is obvious
since a SDR between spaces implies those spaces are homotopic and hence weakly homotopic.
We know of no examples of weakly flawed groups that are not flawed.
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3. Bootstrapping and Extending Flawedness

Consider again the natural inclusion iG : XΓ(K)→ XΓ(G). One often shows that a group
Γ is flawed after proving that iG is a SDR for G = SL(n,C), for all n, and the general proof
for reductive G is usually simply an adaptation of the SL(n,C) case.

3.1. Bootstrapping Flawedness from the Simple Adjoint Case. In this subsection,
and the next one, we prove that to establish flawedness it is sufficient, in some cases, to
consider only simple groups G.

Definition 3.1. We will say that Γ is G-flawed if iG : XΓ(K)→ XΓ(G) is a strong deforma-
tion retraction for a fixed G and any maximal compact K ⊂ G.

We start by considering the case when G is a connected reductive abelian group. It is well
known that these are precisely the (affine) algebraic tori which, over C, are the groups of
the form T ∼= (C∗)n for some n ∈ N.

Proposition 3.2. Let Γ be a finitely generated group and T be an algebraic torus. Then Γ
is T -flawed.

Proof. Let ΓAb := Γ/[Γ,Γ] be the abelianization of Γ, with the canonical epimorphism π :
Γ → ΓAb. Since T is a commutative group, every representation ρ : Γ → T factors as
ρ = ρAb ◦ π for a unique ρAb : ΓAb → T . This shows that the natural inclusion

Hom(ΓAb, T ) ⊂ Hom(Γ, T )

is actually an isomorphism of algebraic varieties. Since the conjugation action by T is trivial,
we deduce the isomorphism of character varieties:

XΓAb(T ) ∼= XΓ(T ).

Finally, since by [FL14] every finitely generated abelian group ΓAb is flawed (and naturally
XΓAb(TK) ∼= XΓ(TK), for a maximal compact TK ⊂ T ), the same holds for Γ. �

Lemma 3.3. Let G and H be reductive C-groups. If Γ is strongly G-flawed and strongly
H-flawed, it is (strongly) G×H-flawed.

Proof. Let KG and KH be maximal compact subgroups of G and H, respectively. By as-
sumption, there is a KG-equivariant SDR from Hom(Γ, G) onto Hom(Γ, KG) and a KH-
equivariant SDR from Hom(Γ, H) onto Hom(Γ, KH). Since products of SDRs are SDRs, the
natural identification

Hom(Γ, G×H) = Hom(Γ, G)× Hom(Γ, H)

defines a (KG × KH)-equivariant SDR from Hom(Γ, G × H) onto Hom(Γ, KG × KH), as
wanted (and conjugation by G×H, acts factor-wise). �

Let G be a reductive C-group, and F be a finite central subgroup of the maximal compact
K ⊂ G. The projection π : G→ G/F induces a morphism of algebraic varieties:

Hom(Γ, G)→ Hom(Γ, G/F ).

This map is not generally surjective, but it surjects onto a union of path-connected compo-
nents of Hom(Γ, G/F ); see [Gol88, Lemma 2.2] and [Cul86, Thm. 4.1].

Proposition 3.4. If Hom(Γ, K/F ) is a K/F -equivariant SDR of Hom(Γ, G/F ), then there
exists a K-equivariant SDR from Hom(Γ, G) onto Hom(Γ, K).



8 C. FLORENTINO AND S. LAWTON

Proof. Denote by Hom∗(Γ, G/F ) ⊂ Hom(Γ, G/F ) the union of components so that

π : Hom(Γ, G)→ Hom∗(Γ, G/F )

is surjective and consider the commutative diagram:

(3.1) Hom(Γ, K)

πK
��

� � // Hom(Γ, G)

π

��
Hom∗(Γ, K/F ) �

� // Hom∗(Γ, G/F ),

where Hom∗(Γ, K/F ) := Hom(Γ, K/F ) ∩ Hom∗(Γ, G/F ), and πK is the restriction of π to
Hom(Γ, K). It is easy to check that, in fact, π−1

K (Hom(Γ, K/F )) = Hom(Γ, K).
In [LR15, Lemma 3.5] it is shown that the varieties Hom(Γ, G) are locally path-connected,

so that π is a covering map (by [Gol88, Lemma 2.2]), in particular a Serre fibration, and
thus has the homotopy lifting property for maps from arbitrary CW complexes.

By assumption there is a SDR Hom(Γ, K/F ) ↪→ Hom(Γ, G/F ). This naturally induces a
SDR on path-connected components, so on the bottom of (3.1), we have a strong deformation
retraction, which is a homotopy: H : I ×Hom∗(Γ, G/F )→ Hom∗(Γ, G/F ) from the identity
to a retract Hom∗(Γ, G/F ) → Hom∗(Γ, K/F ). By pre-composing with idI × π, we get the
bottom map in the following diagram:

(3.2) Hom(Γ, G)

π

��
I × Hom(Γ, G)

H̃
55

// Hom∗(Γ, G/F ),

which can be lifted to the diagonal arrow, yielding a homotopy H̃ which is a (weak) defor-
mation retraction.

It remains to show that this deformation retraction is an SDR, that is, H̃(t, ρ) = ρ for all
t, and all ρ ∈ Hom(Γ, K) ⊂ Hom(Γ, G). By commutativity, we have:

H̃(t, ρ) ∈ π−1(H ◦ (idI × π)(t, ρ)) = π−1(H(t, π(ρ))) = π−1(π(ρ)).

Hence, since the fiber is discrete, H̃(0, ρ) = ρ for all ρ ∈ Hom(Γ, G), and continuity, we
conclude that H̃(t, ρ) = ρ for all t and ρ ∈ Hom(Γ, K), as required.

Finally, since the multiplication action by F commutes with the conjugation action by G
(because F is central) and since the conjugation actions of G/F and of G are the same, it
is clear that π is K-equivariant and restricts to πK . By assumption, the bottom homotopy
in (3.2) is both K- and K/F -equivariant, so the lifted homotopy is also K-equivariant, by
commutativity of the diagram. �

Remark 3.5. The discreteness of the fiber in the previous argument was essential in showing
the SDR lifted to an other SDR. Alternatively, one could use the fact that the inclusion
Hom(Γ, K) ↪→ Hom(Γ, G) is cofibration since Hom(Γ, K) is compact (see [Sm66, Sm68]).

Theorem 3.6. Let G be a reductive group and Ad(G) be its adjoint group. If Γ is strongly
Ad(G)-flawed, then it is (strongly) G-flawed.

Proof. Let DG = [G,G] be the derived subgroup of G. Then, DG is semisimple and there
is a central algebraic torus T such that the multiplication map T × DG → G is surjective
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and has a finite central kernel F = T ∩DG
F → T ×DG→ G ∼= T ×F DG

where F acts by identifying (t, g) ∈ T × DG with (tf−1, fg). This provides another exact
sequence of groups:

(3.3) F → G
ϕ→ T/F ×DG/F

where ϕ is the homomorphism defined by ϕ([t, g]) := ([t], [g]) (the notation [·] means the
equivalence class under the respective F action), so that G/F ∼= T/F ×DG/F .

Since T/F is an abelian reductive group, it is again a torus, so by Proposition 3.2,Γ is
strongly (T/F )-flawed. Now, since Ad(G) and DG have the same Lie algebra, we have an
isomorphism:

Ad(G) ∼= (DG/F )/F1

where F1 is the finite center of DG/F . By hypothesis, Γ is strongly Ad(G)-flawed, and so, by
Proposition 3.4 (applied to the F1 quotient) it is strongly (DG/F )-flawed. Now, by Lemma
3.3 Γ is (T/F × DG/F )-flawed. Finally, again by Proposition 3.4, applied to the isogeny
(3.3), Γ is G-flawed. �

A reductive C-group is said to be of adjoint type if its center is trivial. Hence, the above
theorem allows us to “bootstrap” the property of being flawed from that of being G-flawed
for all simple G of adjoint type.

Corollary 3.7. A finitely presented group Γ is strongly flawed if and only if it is strongly
H-flawed for every simple C-group H of adjoint type.

Proof. One direction is trivial. Let G be any reductive C-group. Then Ad(G) is semisimple,
and it is the direct product of its simple factors:

Ad(G) = G1 × · · · ×Gm.

Since the center of a product is the product of the centers, every Gj is of adjoint type. So,
the result follows from Theorem 3.6 and Proposition 3.4. �

3.2. Bootstrapping from the Simple and Simply Connected Case. We remark that
if we assume that Γ is G-flawed for every simple and simply connected G, this may not
be enough to prove that Γ is flawed, since an SDR can be lifted to a covering but not the
other way. However, a weaker general result is still possible, which motivates the following
definition.

Definition 3.8. We say that Γ is special flawed if there exists an irreducible component
X∗Γ(G) in XΓ(G) that SDR onto X∗Γ(K) := X∗Γ(G) ∩ XΓ(K).

Example 3.9. One trivial example of special flawedness is when a character variety has an
isolated point [ρ] ∈ XΓ(G); in this case, we call ρ rigid. This situation occurs, for example,
when Γ is a Kazhdan group. It is known that the identity representation of such Γ is rigid,
for all G (see [Rap99, Proposition 1] and [Rap13, Theorem 31]), so Kazhdan groups are
special flawed.

Since SDRs are continuous, we immediately have:

Proposition 3.10. If Γ is flawed, it is special flawed.
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In general, for a group Γ and a Lie group G with center Z, Hom(Γ, Z) is a group and
acts on Hom(Γ, G) by (σ · ρ)(γ) = σ(γ)ρ(γ). When Γ is finitely generated, Hom(Γ, G) and
Hom(Γ, Z) are naturally subsets of Gr with respect to a set of r generators of Γ. The action
of Hom(Γ, Z) is then the restricted action of Zr on the subspace Hom(Γ, G) ⊂ Gr given by
(z1, ..., zr) · (g1, ..., gr) = (z1g1, ..., zrgr). We can also consider the action of G × Hom(Γ, Z)
on Hom(Γ, G) by combining conjugation and the multiplication action.

Lemma 3.11. Let G be reductive C-group with maximal compact subgroup K. Let F be a
subgroup of Z(K), the center of K. Let KN 1 and KN 2, respectively, be the Kempf-Ness
sets of Hom(Γ, G) with respect to the conjugation action of G, and with respect to the action
G× Hom(Γ, F ). Then KN 1 = KN 2.

Proof. Without loss of generality, we can assume that K is a subgroup of SU(n) and that

G is a subgroup of SL(n,C) ⊂ gl(n,C) ∼= Cn2
, and endow gl(n,C) with the bilinear form

〈X, Y 〉 = tr(X∗Y ). This form is K × Z(K)-invariant since

(3.4) tr((zkXk−1)∗(zkY k−1)) = tr(kX∗k−1z−1zkY k−1) = tr(X∗Y ),

and the complex conjugate transpose g∗ of g ∈ G agrees with the same operation on the vector
space gl(n,C). If Γ is generated by r elements, we can consider Hom(Γ, G) ⊂ Gr ⊂ Crn2

.
This allows us to define a K × Hom(Γ, Z(K))-invariant bilinear form on Hom(Γ, G) by

〈(X1, ..., Xr), (Y1, ..., Yr)〉 =
r∑
j=1

〈Xj, Yj〉.

With respect to this form, a representation ρ ∈ Hom(Γ, G) is minimal with respect to an
action of a group H if ‖ρ‖ ≤ ‖h · ρ‖ for all h ∈ H, and the Kempf-Ness set with respect to
the H-action is the collection of minimal vectors.

Clearly the multiplicative action of F r on Gr commutes with conjugation since F ⊂ Z(K).
Moreover, by (3.4):

‖(g, z1, · · · , zr) · ρ‖ = ‖g · ρ‖,
for all (g, z1, · · · , zr) ∈ G × Hom(Γ, F ), using the conjugation action of G on the right and
the conjugation-translation action of G× Hom(Γ, F ) on the left. Thus, the Kempf-Ness set
for both actions are identical. �

Let us denote by X0
Γ(G) the path component of XΓ(G) containing the trivial representation

γ 7→ 1 ∈ G, for all γ ∈ Γ. Likewise, denote by X0
Γ(K) the path component of XΓ(K)

containing the trivial representation.
For connected character varieties, we can also bootstrap the property of being flawed from

that of G-flawed for all G simple and simply connected.

Theorem 3.12. If Γ is strongly G-flawed for all simple simply connected C-groups G, then
Γ is (strongly) special flawed.

Proof. Let G be a connected reductive C-group. As in the proof of Theorem 3.6, the central
isogeny theorem states that G ∼= T ×F1 DG, with DG = [G,G] semisimple, T a central
algebraic torus, and F1 := T ∩DG a finite central subgroup.

Since DG is semisimple, there exists a collection of simple simply connected C-groups
G1, ..., Gn such that DG ∼= (

∏n
i=1Gi)/F2, where F2 is finite central subgroup of

∏n
i=1Gi.

Putting this together, there is a finite central group F := F1 × F2 ⊂ T ×
∏n

i=1Gi such that
G ∼= (T ×

∏n
i=1Gi)/F .
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Let Hom0(Γ, G) be the component of Hom(Γ, G) that contains the trivial representation
and let Hom′(Γ, F ) be the subgroup of Hom(Γ, F ) mapping Hom0(Γ, T ×

∏n
i=1Gi) to itself.

Then, by [Sik15, Proposition 5], we have:

Hom0(Γ, G) ∼= Hom0(Γ, T ×
n∏
i=1

Gi)/Hom
′(Γ, F )

∼=

(
Hom0(Γ, T )×

n∏
i=1

Hom0(Γ, Gi)

)
/Hom′(Γ, F ).

By Lemma 3.11, the Kempf-Ness sets for the conjugation action of G and that of the
mixed action G× Hom′(Γ, F ) are the same.

Let Ki be maximal compact subgroups of Gi, and TR a maximal compact in T . By assump-
tion, for each index i, there is a Ki-equivariant SDR the Kempf-Ness set of Hom0(Γ, Gi) onto
Hom0(Γ, Ki). Thus, since products of strong deformation retracts are strong deformation
retracts, and using Proposition 3.2 for the torus case, there is a (TR ×

∏n
i=1Ki)-equivariant

SDR from the Kempf-Ness set of

Hom0(Γ, T )×
n∏
i=1

Hom0(Γ, Gi)

to Hom0(Γ, TR)×
∏n

i=1 Hom
0(Γ, Ki).

Note that the conjugation action of (TR ×
∏n

i=1Ki) and that of K are the same since
the conjugation action of F is trivial (it is central). Therefore, by Lemma 3.11, there is a
K-equivariant SDR from the Kempf-Ness set of Hom0(Γ, G) onto Hom(Γ, K). �

Remark 3.13. By [LR15, Proposition 4.2] the above theorem can be improved in some cases.
In particular, when Γ is “exponent-canceling” (e.g. free groups, free abelian groups, surface
groups, RAAGs) the covering T ×

∏n
i=1Gi → G with deck group F induces a surjective map

XΓ(T ×
∏n

i=1Gi)→ XΓ(G) whose quotient by Hom(Γ, F ) induces an isomorphism. In these
cases, the conclusion of Theorem 3.12 can be improved from special flawed to flawed.

3.3. Extending Flawedness to the Real Case . We now extend the theory to allow for
real groups G and real character varieties. We obtain, in particular, a very general criterion
for when a flawed group Γ will be also flawed in the more general real context.

We call a Lie group G real K-reductive if the following conditions hold:

(1) K is a maximal compact subgroup of G;
(2) G is a real algebraic subgroup of G(R); the R-points of a reductive C-group G;
(3) G is Zariski dense in G.

Any real K-reductive Lie group has a faithful representation since every reductive C-group
does. Therefore, we may consider any such group as a subgroup of SL(n,C) for appropriate
n.

Given a self-map α of a set X, we will use the notation Fixα(X) := {x ∈ X | α(x) = x}
to denote the fix-point set.

Let g denote the Lie algebra of G, and gC the Lie algebra of G. We will fix a Cartan
involution θ : gC → gC which restricts to a Cartan involution

(3.5) θ : g→ g.
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The map θ is defined as θ := στ , where σ, τ are commuting involutions of gC, such that
g = Fixσ(gC) and k′ := Fixτ (g

C) is the compact real form of gC. Thus, k′ is the Lie algebra
of a maximal compact subgroup of G. We call σ a real structure.

Using θ we obtain a Cartan decomposition of g:

g = k⊕ p

where
k = g ∩ k′, p = g ∩ ik′

and θ|k = 1 and θ|p = −1. Furthermore, k is the Lie algebra of a maximal compact subgroup
K of G. Then K = K ′∩G, where K ′ is a maximal compact subgroup of G, with Lie algebra
k′ = k⊕ ip. Also, k and p satisfy [k, p] ⊂ p and [p, p] ⊂ k. The Cartan decomposition of gC is:

gC = kC ⊕ pC

with θ|kC = 1 and θ|pC = −1.
The Cartan involution (3.5) lifts to a Lie group involution Θ : G → G whose differential

is θ and such that K = FixΘ(G). Θ is also the composition of two commuting involutions T
and S, where T corresponds to τ , and S corresponds to σ.3

For a finitely generated group Γ, there is an inclusion Hom(Γ, K) ↪→ Hom(Γ, G), and so
there is a natural map iG : XΓ(K) → XΓ(G). The map iG is injective by observing that
[FL13, Remark 4.7] applies to this setting by [CFLO16b, Section 3.2].4

Definition 3.14. We will say that Γ is G-flawed if XΓ(G) strong deformation retracts onto
iG(XΓ(K)) for a fixed G and any maximal compact K ⊂ G.

In every known case of a flawed group, it was first showed that Γ is G-flawed for all
reductive C-groups and then that Γ was G-flawed for all real reductive G.

Definition 3.15. If Γ is G-flawed for all real reductive G, we will say that Γ is real flawed.

We conjecture that this is a general phenomenon. In particular, we conjecture that if Γ is
flawed, then it is real flawed.

The following theorem, giving evidence to the aforementioned conjecture, does account
for all known cases where flawed groups turn out to be real flawed.

Theorem 3.16. If Γ is real flawed, it is flawed. Conversely, if Γ is strongly flawed and the
SDR commutes with a real structure on G, then Γ is real flawed.

Proof. Since every reductive C-group is a real reductive K-group, Γ is flawed if it is real
flawed by definition.

Now suppose that Γ is strongly flawed. Let G be a real reductive K-group that is a
subgroup of the real points of G. Let Θ = ST be the Cartan involution on G such that
G = FixS(G), K = FixΘ(G), and K ′ = FixT (G). Note that K ′ is a maximal compact
subgroup of G such that K = K ′ ∩G.

The action of S, T , and Θ on G extends to an action on Hom(Γ,G) by post-composition
of homomorphisms.

3For an appropriate linear representation of G, we can arrange for S to be complex conjugation and for
T to be complex conjugation composed with inverse-transpose.

4In further generality, a theorem of Cartan says that any connected real Lie group G is diffeomorphic to
K×Rn where K is a maximal compact subgroup of G. The argument in [FL13, Remark 4.7] can be adapted
to this setting too.
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Since Γ is strongly flawed, there exists a K ′-equivariant SDR,

Φ : Hom(Γ,G)× [0, 1]→ Hom(Γ,G),

from Hom(Γ,G) onto Hom(Γ, K ′). By assumption, Φ is S-equivariant. In other words,
S(Φ(ρ, t)) = Φ(S(ρ), t). Therefore, Φ restricts to the fix-point set of S. Since Φ is K ′-
equivariant and K ⊂ K ′, we conclude that Φ is K-equivariant too. Therefore, since
FixS(Hom(Γ,G) = Hom(Γ, G) and FixS(K ′) = K, Φ restricts to a K-equivariant SDR
from Hom(Γ, G) onto Hom(Γ, K). Therefore, Γ is (strongly) real flawed. �

4. Free Products of Nilpotent Groups are Flawed

In this section, we prove our first main theorem, as discussed in the introduction (The-
orem A). We start with a generalization of Theorem 2.14 to free products, that may have
independent interest.

Theorem 4.1. A free product of strongly flawed groups is strongly flawed (hence flawed).
More concretely, let Γ1, ...,Γm be finitely generated groups and Γ1 ∗ · · · ∗ Γm be their free
product. If there is a K-equivariant SDR from Hom(Γi, G) to Hom(Γi, K) for all 1 ≤ i ≤ m,
then Γ1 ∗ · · · ∗ Γm is strongly flawed.

Proof. We prove in [FL13, Corollary 4.10] that the hypothesis of this theorem implies that
Γ1 ∗ · · · ∗ Γm is flawed. Here, we provide a short proof of the stronger result. Given K-
equivariant strong deformation retracts from Hom(Γi, G) to Hom(Γi, K) for each i, we im-
mediately conclude that there is a Km-equivariant SDR from Hom(Γ, G) ∼=

∏m
i=1 Hom(Γi, G)

to Hom(Γ, K) ∼=
∏m

i=1 Hom(Γi, K) since the product of equivariant SDR’s is an SDR that is
equivariant with respect to the product of acting groups. Since the action by K is contained
diagonally in the product action of Km, we conclude there is a K-equivariant SDR from
Hom(Γ, G) onto Hom(Γ, K), as required. �

Remark 4.2. The proof of Theorem 4.1, can be directly adapted to the real reductive case as
done in [CFLO16b, CFLO16a]. In fact, this follows from Theorem 3.16 with the observation
that the SDR commutes with a real structure on G.

Corollary 4.3. The class of strongly flawed groups is closed under free product.

Now, we come to the main result on free products of nilpotent groups. The lower central
series of a group Γ is defined inductively by Γ1 := Γ, and Γi+1 := [Γ,Γi] for i > 1. A group
Γ is nilpotent if the lower central series terminates to the trivial group.

Example 4.4. The Heisenberg group

H(Z) :=


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z


admits the presentation:

〈a, b, c | [a, c] = [b, c] = 1, [a, b] = c〉.
Hence, it is a nilpotent group.

Theorem 4.5. Let Γ be isomorphic to a free product of finitely many nilpotent groups, each
of which is finitely generated. Then Γ is strongly real flawed. In particular, if G is be a real
reductive K-group, then XΓ(G) strong deformation retracts onto XΓ(K).
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Proof. As with earlier arguments, we assume that K is a subgroup of U(n), G is a subgroup of
GL(n,C), g∗ is the complex conjugate transpose of g ∈ G, and ρ ∈ Hom(Γ, G) is represented
by an r-tuple of elements in G since Γ is finitely generated.

Let Γ = Γ1 ∗ · · · ∗ Γm with every Γi finitely generated and nilpotent. In Bergeron’s
paper, [Ber15, Theorem 1] it is shown that there exists a K-equivariant strong deformation
retraction of Hom(Γi, G) to Hom(Γi, K) when Γ is a finitely generated nilpotent group. The
main idea of the proof in [Ber15] is this:

(1) For a real reductive group G acting on a real algebraic variety V , there is a also a
Kempf-Ness set KN V ⊂ V such that there exists a K-equivariant strong deformation
retraction from V to KN V ; see [RS90]. This idea was first used to study the topology
of representation spaces in [FL09] and its generalizations [CFLO16b, CFLO16a].

(2) The important observation in [Ber15] is that for Γ a nilpotent group one can take
KNHom(Γ,G) to be NΓ :=

{ρ ∈ Hom(Γ, G) | ρ(Γ) consists of normal elements},
where g ∈ G is normal if and only if gg∗ = g∗g. In [CFLO16b, Proposition 4.7/4.8]
the Kempf-Ness set is described generally for Hom(Γ, G) where Γ is any finitely
generated group. From this description it is clear that NΓ ⊂ KNHom(Γ,G) for any
finitely generated Γ. However, it takes more work to show these sets are equal if Γ is
nilpotent.

(3) Therefore, one has a K-equivariant strong deformation retraction from Hom(Γ, G) to
the set NΓ.

(4) Lastly, following [PS13], as done in [FL14, Section 4] for the case where Γ is abelian,
one shows there is a K-equivariant strong deformation retraction from NΓ onto
Hom(Γ, K) by applying the scaling SDR C∗ to S1 to the eigenvalues of the com-
ponents of ρ. Although it is fairly clear that this makes sense when Γ is abelian, it
takes more work to show this SDR applies in the nilpotent case.

Thus, Theorem 4.5 now follows from Theorem 4.1 and Remark 4.2. �

Corollary 4.6. A finitely generated group isomorphic to a free product of nilpotent groups
is real flawed.

Corollary 4.7. The modular group PSL(2,Z) is flawed.

Proof. PSL(2,Z) is isomorphic to the free product of Z2 and Z3. Since the free product of
finitely many finite cyclic groups is an example of a free product of nilpotent groups, we
conclude that the modular group is flawed by the above corollary. �

Remark 4.8. Theorem 4.5 includes finitely generated groups that are free groups, abelian
groups, nilpotent groups, and free products of cyclic groups. Hence this theorem unifies all
prior known cases of (non-finite) flawed groups. Also, it gives further evidence that RAAGs
with torsion are flawed since free products of cyclic groups are RAAGs with torsion but were
not before now known to be flawed.

There is a class of groups that includes both RAAGs and free products of nilpotent groups,
namely, the graph product of nilpotent groups. Let Q = (V,E) be a finite graph and {Gv |v ∈
V } a collection of finitely generated nilpotent groups. The graph product of the Gv’s with
respect to the graph Q is defined as F/N where F is the free product of all the G′vs and N
is the normal subgroup generated by subgroups of the form [Gu, Gv] whenever there is an
edge joining u and v.



FLAWED GROUPS, CHARACTER VARIETIES 15

Conjecture 4.9. If Γ is a finitely presentable group that is isomorphic to a graph product
of nilpotent groups, then Γ is flawed.

The next example emphasizes that the above conjecture still does not unify all known
cases and conjectures about flawed groups.

Example 4.10. Let F be a finite group that is not nilpotent. Since F is finite it is flawed.
If it were a free product A ∗ B with both A,B non-trivial then it would be infinite. Hence,
since it is not nilpotent, it is not in the class of groups isomorphic to a graph product of
nilpotent groups.

Remark 4.11. The first theorem in [BDD+20] states that if a group Γ acts on a simplicial
tree T without inversions and with trivial edge stabilizers, and is generated by the vertex
stabilizers Γv, then there is a subset O of the vertices of T intersecting each Γ-orbit in one
vertex such that G is isomorphic to a free product ∗v∈OGv. From this point-of-view, Theorem
4.5 says that finitely presented groups acting in this way on trees with nilpotent stabilizers
are flawed.

5. Right Angled Artin Groups

As in the previous section, let G be a reductive C-group, and let K ⊂ G be a maximal
compact subgroup. We continue with the assumption (without loss of generality) that K ⊂
SU(n) and G ⊂ SL(n,C).

A Right Angled Artin Group (RAAG) is a finitely presented group having only commutator
relations: ab = ba. Associated to any RAAG Γ is a graph Q whose vertices correspond to
generators of Γ and whose edges correspond to relations in Γ. Conversely, given a finite graph
Q, there exists a RAAG ΓQ whose generators correspond to the vertices of Q and whose
commutator relations correspond to the edges of Q. A RAAG with torsion is a finitely
presented group in which all relations are either commutators or torsion relators (an = 1);
these are exactly finite graph products of cyclic groups.

Free products of finitely many cyclic groups (no edges in Q) and finitely generated abelian
groups (Q is a complete graph) are both extremal examples of RAAGs (with torsion). Since
both these classes of groups are flawed, in [FL14] we conjectured that RAAGs (with torsion)
are flawed. Theorem 4.6 gives further evidence of this conjecture. We now summarize a
strategy to prove that RAAGs with torsion are flawed (in the outline Γ is a RAAG with
torsion). Define the elliptic elements in G to be

(5.1) GK :=
⋃
g∈G

gKg−1

(see [Kos73]) and let Gss denote the set of semisimple elements in G.

(1) A weak deformation retraction between a space X and a subspace A is a continuous
family of mappings Ft : X → X, t ∈ [0, 1], such that F0 is the identity on X,
F1(X) ⊂ A, and Ft(A) ⊂ A for all t. Define

Hom(Γ, Gss) := {ρ ∈ Hom(Γ, G) | ρ(γ1), ..., ρ(γr) ∈ Gss}.

Using ideas from [PS13], [FL14, Lemma 4.15] proves there exists a G-equivariant
weak deformation retraction from Hom(Γ, G) onto Hom(Γ, Gss) that fixes K during
the retraction.
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(2) Define

Hom(Γ, GK) := {ρ ∈ Hom(Γ, G) | ρ(γ1), ..., ρ(γr) ∈ GK}.
Using the previous step [FL14, Theorem 4.16] proves that when Γ is a RAAG with
torsion, XΓ(G) strongly deformation retracts onto Hom(Γ, GK)//G and fixes the sub-
space XΓ(K) for all time.

(3) By Theorem 2.11, it remains to prove that there exists a K-equivariant weak retrac-
tion from Hom(Γ, GK) to Hom(Γ, K) when Γ is a RAAG (with torsion). This step
remains an open problem.

The above steps provide proof for:

Theorem 5.1. [FL14, Theorem 4.18] Let Γ be a RAAG with torsion, G be a reductive C-
group and let K be a maximal compact subgroup of G. If there exists a K-equivariant weak
retraction from Hom(Γ, GK) to Hom(Γ, K) for all G, then Γ is flawed.

We now illustrate that this last step holds for RAAGs we call star shaped.

5.1. Star Shaped RAAGs are Flawed. As described above, given a graph Q = (V,E)
with vertex set V = {1, · · · , r} and edge set E (consisting of cardinality 2 subsets of V ), we
define the RAAG of Q as the finitely presented group:

ΓQ := 〈a1, · · · , ar | [ai, aj] = 1 iff {i, j} ∈ E〉.

Definition 5.2. Let (V,E) be a star graph, that is V = {0, 1, · · · , r}, and the distinguished
vertex 0 ∈ V is connected to every other vertex and there are no further edges (in particular,
such a graph is connected). The RAAG associated to this star graph will be called the star
shaped RAAG of rank r + 1. It has the presentation:

Γ? := 〈a0, · · · , ar | [a0, ai] = 1 ∀i = 1, · · · , r〉.

As before, fix K and T , maximal compact and maximal torus, respectively, of the reductive
C-group G. Without loss of generality, consider the Cartan involution on SL(n,C), given
by inverse conjugate transpose, and its restriction to G ⊂ SL(n,C) so that K = FixΘG ⊂
SU(n).

The torus T can be decomposed into its compact and positive parts

T = TKA,

where TK = T ∩K = FixΘ T is a maximal torus of K, and A is a “positive real torus” (e.g.
when G = GL(n,C), T the diagonal torus, A consists of diagonal matrices with real positive
entries, written as exponentials).

Let us recall the KAK decomposition on a reductive group (see [Kna02]). Define ∗ : G→ G
by g∗ := Θ(g)−1, so that k∗ = k−1 for k ∈ K.

Proposition 5.3. Let G be a reductive C-group. Then, every element g ∈ G may be written
as g = kah∗ for some k, h ∈ K and a ∈ A. Moreover, the restricted exponential exp : a→ A
(where a is the Lie algebra of A) is a diffeomorphism and the element a ∈ A is unique up to
conjugation by the Weyl group W .

We need the following result.

Proposition 5.4. If g ∈ K and it commutes with kexh∗ ∈ G (k, h ∈ K) then g commutes
with ketxh∗, for every t ∈ R.
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For the proof we use two lemmata.

Lemma 5.5. If k ∈ K commutes with ex ∈ A then it commutes with etx for every t ∈ R.

Proof. Noting that k∗ = k−1, and that ex (a positive definite matrix in a given linear
representation) has a unique t power, for t ∈ R, we see that the commuting hypothesis
kexk∗ = ekxk

∗
= ex is equivalent to ketxk∗ = etx for every t ∈ R. �

Lemma 5.6. If k ∈ K, ex ∈ A and e−xkex ∈ K, then k commutes with ex.

Proof. If e−xkex ∈ K, then 1 = (e−xkex)(e−xkex)∗ = e−xke2xk∗e−x which implies ke2xk =
e2x. So by the previous lemma, this means that k commutes with ex. �

We now prove Proposition 5.4.

Proof. We start with g, h, k ∈ K, and assume gkexh∗ = kexh∗g. On “passing” g from left to
right, we write:

gkexh∗ = kg1e
xh∗ = kexg2h

∗ = kexh∗g3,

with g1 = k∗gk ∈ K, g2 = e−xg1e
x, and g3 = hg2h

∗ = g by the hypothesis that g commutes
with kexh∗. Then, g3 ∈ K which implies g2 = h∗g3h ∈ K . By Lemma 5.6, both g2 and
g1 = exg2e

−x ∈ K implies g2 commutes with ex. So, g1 = g2. Then,

gketxh∗ = kg1e
txh∗ = ketxg1h

∗ = ketxh∗g3 = ketxh∗g,

as wanted, for all t ∈ R. �

Now denote by:
Hom(Γ, GK)

the representations of Γ where the image of the generators lie in the elliptic elements GK =
∪g∈GgKg−1 ⊂ G. It is clear that Hom(Γ, K) ⊂ Hom(Γ, GK) and using the embedding
XΓ(K) ↪→ XΓ(G) it is not hard to see that XΓ(K) maps into Hom(Γ, GK)//G.

Theorem 5.7. Let Γ? be a star shaped RAAG. Then, Hom(Γ?, K)/K is a strong deformation
retract of Hom(Γ?, GK)//G .

Proof. Write ρ ∈ Hom(Γ?, GK) as

ρ = (A0, A1, · · · , Ar) ∈ Gr+1
K , Ai := ρ(ai).

Denote by
Hom0(Γ?, GK) ⊂ Hom(Γ?, GK)

the subset of representations with A0 ∈ K. Since, in every G-orbit there is a G-conjugate
of A0 which is already in K, we find that there is a natural identification between the orbit
spaces:

Hom(Γ?, GK)//G ∼= Hom0(Γ?, GK)/K.

Now, write the KAK decompositions of the Ai’s:

Ai = kie
xih∗i , i = 1, · · · , r.

Then, letting Ai(t) := kie
txih∗i , there is a homotopy:

F : [0, 1]× Hom0(Γ?, GK) → Hom0(Γ?, GK)

(t, ..., Ai, ...) 7→ (..., Ai(t), ...),

with A0 ∈ K kept fixed for all t. This is a homotopy of Hom0(Γ?, GK) since Proposition
5.4 shows that the commutation relations [Ai(t), A0] = 1 are satisfied for all t ∈ [0, 1]. Note
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that, even though the KAK decomposition is not unique, F is well defined, since for every
t and Ai ∈ G, the element Ai(t) is the same regardless of the initial choices (xi, ki, hi)
for Ai = Ai(0). It is also easy to see that F is indeed continuous, since any sequence

A
(n)
i (n ∈ N) converging to Ai will give a sequence A

(n)
i (t) converging to Ai(t) for all t

and i = 1, · · · , r. Since this homotopy is clearly K-equivariant (even K × K-equivariant),
and Hom(Γ?, K)/K is kept fixed, we have determined a SDR from Hom0(Γ?, GK)/K to
Hom(Γ?, K)/K, as required. �

Corollary 5.8. Star shaped RAAGs are flawed.

Proof. Theorem 5.1 and Theorem 5.7 give the result. �

Remark 5.9. (1) Star shaped RAAGs are cartesian products of free groups with Z. Conse-
quently, they are not in the class of groups isomorphic to free products of nilpotent groups.
(2) The above proof can be easily generalized to allow a0 to have torsion.

5.2. Connected RAAGs are Special Flawed. As above, G is a reductive group C-group,
with a Cartan involution Θ : G → G, and K = FixΘ(G) is a maximal compact subgroup.
Fix also a maximal torus T ⊂ G with maximal compact TK = FixΘ(T ).

Again, without loss of generality, we assume G ⊂ SL(n,C), K = G∩ SU(n), T = ∆n ∩G,
where ∆n is the diagonal torus of SL(n,C), and the Cartan involution is given by Θ(g) =
(g−1)∗, where ∗ is conjugate transpose. We make the following general definitions.

Definition 5.10. An element g ∈ G is called normal if g∗g = gg∗. It is called semisimple
if it is diagonalizable (there is h ∈ G such that hgh−1 ∈ T ), and is called elliptic if it is
semisimple and all its eigenvalues have norm 1 (this agrees with (5.1)). Finally, g is called
unitary if g ∈ K.

It is clear that unitary elements are both normal and elliptic. The fact that the converse
is also valid, will be crucial later on.

Lemma 5.11. If g ∈ G is normal with non-repeating eigenvalues and hg = gh for some
h ∈ G, then h is normal too.

Proof. Since hg = gh and g is diagonalizable, there exists k ∈ SU(n) so khk−1 = t and
kgk−1 = d where t is upper-triangular and d is diagonal. Thus, td = dt. Note that (dt)ij =
diitij and (td)ij = tijdjj and so we conclude that

0 = (dt− td)ij = tij(dii − djj)
which in turn gives that tij = 0 if and only if i 6= j since dii = djj if and only if i = j. Thus, t is
diagonal and hence normal which implies h is normal since it is unitarily diagonalizable. �

Lemma 5.12. Let N,E ⊂ G be the subsets of normal and elliptic elements, respectively.
Then N ∩ E = K.

Proof. The inclusion K ⊂ N ∩ E is clear. Conversely, let g ∈ N ∩ E. Since g is normal, it
is well known that g is unitarily diagonalizable, that is there is k ∈ K such that kgk−1 ∈ T .
Now, note that the unitary torus TK consists of the elements of T with eigenvalues of norm
1. Since kgk−1 has the same eigenvalues as g, and g is elliptic, kgk−1 ∈ TK ⊂ K. Therefore,
g ∈ K. �

Corollary 5.13. Let g ∈ G be elliptic and h ∈ G be normal with non-repeating eigenvalues.
If gh = hg, then g ∈ K.
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Proof. By Lemma 5.11, since gh = hg and h ∈ N has non-repeating eigenvalues, g is also
normal. So, g is normal and elliptic. Thus, by the previous Lemma, g ∈ K. �

Now, let Γ be a finitely generated group, with a fixed collection of generators {γ1, · · · , γr}.
The evaluation map gives an embedding:

Hom(Γ, G) ↪→ Gr.

Let KN Γ ⊂ Hom(Γ, G) be the Kempf-Ness set and consider the normal Kempf-Ness subset :

NΓ := {ρ(γi) ∈ G is normal ∀i = 1, · · · , r}.
By the general Kempf-Ness-Neeman-Schwarz theory described earlier, we have:

NΓ ⊂ KN Γ,

and the inclusion is K-equivariant. Let us say that the marked group (Γ, {γ1, · · · , γr}) is
normal if NΓ = KN Γ.

Now, let ΓQ be a RAAG. Such a group has a natural marking coming from a graph
Q = (V,E), whose set of vertices is precisely V = {γ1, · · · , γr}:

ΓQ := 〈γ1, · · · , γr | [γi, γj] = 1 iff γiγj is an edge of Q〉
We say that ΓQ is connected if Q is connected. When the marking is understood, we just
write Γ instead of (Γ, {γ1, · · · , γr}).

Finally, define the subset of elliptic representations of (Γ, {γ1, · · · , γr}):
Home(Γ, G) := {ρ(γi) ∈ G is elliptic ∀i = 1, · · · , r}.

and the subset:

Homde(Γ, G) := {ρ(γi) is elliptic and has distinct eigenvalues ∀i = 1, · · · , r},
which is G-invariant. Note that Home(Γ, G) is just the set Hom(Γ, GK) from earlier.

Theorem 5.14. Connected RAAGs are special flawed.

Proof. We know that the GIT quotient, can be interpreted as the polystable quotient, and
also as the Kempf-Ness (symplectic) quotient:

Hom(Γ, G)//G ∼= Homps(Γ, G)/G ∼= KN Γ/K,

and for every G-invariant subset Y ⊂ Homps(Γ, G) we can define the Kempf-Ness set of Y
as

KN Y
Γ := KN Γ ∩ Y =

{
(A1, · · · , Ar) ∈ Y |

r∑
i=1

[A∗i , Ai] = 0

}
,

and we get the identification:

(5.2) Y//G ∼= KN Y
Γ /K,

as topological (Hausdorff) spaces. In particular, KN Y
Γ is always a closed subset of Y .

Now, let Γ = ΓQ be a connected RAAG. Then, there is a SDR from Hom(Γ, G)//G to
Home(Γ, G)//G by Theorem 5.1.

Consider the subset Y := Homde(Γ, G). Then,

Y ⊂ Y ⊂ Home(Γ, G)

which is dense in Y , the closure of Y in Home(Γ, G). Note that Y //G contains the identity
representation. In fact, commutation relations do not impose any restriction on eigenvalues,
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so the distinct eigenvalues condition is the complement of equality conditions on represen-
tations, which form a Zariski closed set in every irreducible component of Hom(Γ, G) 5.

Now, we have from Equation (5.2):

KN Y
Γ /K

∼= Y //G.

The following lemma finishes the proof by showing KN Y
Γ /K is X∗Γ(K) for some irreducible

component X∗Γ(G). �

Lemma 5.15. If Y := Homde(Γ, G) ⊂ Y , then KN Y
Γ = Homde(Γ, K), and the closure of

KN Y
Γ equals KN Y

Γ . Moreover, KN Y
Γ /K = X∗Γ(K) for some irreducible component X∗Γ(G).

Proof. We can G-conjugate the first element, ρ(γ1), to be in K. So, there is an identification:

Home(Γ, G)//G = Hom1(Γ, G)/K,

where Hom1(Γ, G) are the representations such that ρ(γ1) ∈ K. So, we also have:

Homde(Γ, G)//G ∼= Homde
1 (Γ, G)/K.

Now, let ρ ∈ Homde
1 (Γ, G), so that ρ(γ1) ∈ K with distinct eigenvalues. For any other

vertex, say γ2, that is adjacent to γ1 (i.e., ρ(γ1) and ρ(γ2) commute) we get that ρ(γ2) is
elliptic and commutes with the normal (in fact unitary ρ(γ1)). So, by Corollary 5.13, we
get that ρ(γ2) ∈ K (and has also distinct eigenvalues). Since Γ is a connected RAAG, we
proceed in the same way, and get that all ρ(γi) are unitary.

This means that the Kempf-Ness set of Homde(Γ, G) consists of unitary representations;
that is, KN Y

Γ = Homde(Γ, K).

Finally, since Homde(Γ, G) ⊂ Y is dense (and G-invariant), then KN Y
Γ ⊂ KN Y

Γ is also

dense. And since KN Y
Γ is a closed subset of Home(Γ, G), we get that the closure of KN Y

Γ

equals KN Y
Γ . But any sequence of matrices gn that verify [g∗n, gn] = 0 will have a limit that

is normal. Since we are in Home(Γ, G) the limit will be unitary, by Corollary 5.13. Hence,

KN Y
Γ consists of unitary representations and includes the identity representation. Thus,

KN Y
Γ /K is X∗Γ(K) where X∗Γ(G) is the component of abelian representations (henceforth

called the abelian component). �

As in Subsection 5.1, let Q = (V,E) be a graph and ΓQ be the associated RAAG. ΓQ will
be called a tree if Q is a tree, that is, a connected graph without cycles. By removing a leaf
v ∈ V (that is, v is a vertex with valence 1) from a tree Q, we get another tree with n − 1
vertices. The following lemma was suggested to us by M. Bergeron.

Lemma 5.16. Let G be a simply-connected reductive C-group and Γ a tree RAAG. Then
Hom(Γ, G) and XΓ(G) are connected.

Proof. First, since G is connected, XΓ(G) is connected if Hom(Γ, G) is connected. So we
prove the latter. By [PS13], there exists a G-equivariant weak deformation retraction from
Hom(Γ, G) onto Hom(Γ, Gss). So it suffices to show that there is a path in Hom(Γ, G) from
any point in Hom(Γ, Gss) to the identity representation.

Let Γ = ΓQ be a RAAG with generators {a1, . . . , ar}, and Q = (V,E) be a tree with
vertices labeled by the integers {1, . . . , r}. There is an edge between i and j, that is {i, j} ∈
E, if and only if [ai, aj] = 1 is a relation in Γ.

5Note that some components may not intersect with Y at all, see the next section for examples.
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Let ρ ∈ Hom(Γ, Gss), with Ai := ρ(ai) ∈ Gss. Then, if {i, j} ∈ E, Ai and Aj are in each
other’s centralizers, so that Ai ∈ CG(Aj) and Aj ∈ CG(Ai). Since G is simply-connected,
centralizers of semisimple elements are connected by [SS04, Theorem 3.9]. Hence, CG(Ai) is
connected, and contains the identity of G, for all i.

We can relabel the vertices so that 1 ∈ V is a leaf of Q, 2 ∈ V is a leaf of the tree obtained
by removing 1, and so on. Let σ(i) ∈ V be the unique vertex connected to i ∈ V by an edge
after removing vertices 1, . . . , i− 1. Observe that σ(i) > i for all i = 1, . . . , r.

Let γ1(t), t ∈ [0, 1], be the path in CG(Aσ(1)) from A1 to the identity I ∈ G. From this, we
construct a path ρ1(t) in Hom(Γ, G) from ρ = (A1, . . . , Ar) = ρ1(0) to ρ1(1) = (I, A2, . . . , Ar).
Now, we repeat the process with a path γ2(t) from A2 to the identity in CG(Aσ(2)), obtaining
a path from (I, A2, . . . , Ar) to (I, I, A3, . . . , Ar). Thus, in a finite number of steps we obtain
a path from ρ to (I, . . . , I) ∈ Hom(Γ, G), since in each step we preserve the relations in Γ.
This concludes the proof. �

Remark 5.17. Let Γ be a tree. From Theorem 5.14 we know that Γ is special flawed.
Therefore, Γ is G-flawed whenever XΓ(G) is irreducible. From Lemma 5.16, we know that
XΓ(G) is connected whenever G is simply-connected. It is natural to then think, from
Theorem 3.12 and Remark 3.13, that trees are G-flawed whenever DG is simply-connected.
However, the examples in the next subsection show character varieties of trees Γ with simply-
connected G which are not irreducible. So we cannot conclude that trees are G-flawed, even
for simply-connected G, from Lemma 5.16 alone.

Example 5.18. In [Ber15] it is shown that if Γ = Z o Z4 then the Kempf-Ness set of
Hom(Γ, G) is not equal to NΓ. This shows that the strategy used above will not work to
prove that solvable, virtually abelian, virtually nilpotent, nor supersolvable groups are flawed
(although we expect that they are).

5.3. Examples: Simple Non-Abelian Non-Free RAAGs. In this section we consider
the simplest non-free, non-abelian RAAG, which is a star shaped RAAG on 3 vertices. For
simplicity, we consider G to be a simply connected semisimple C-group.

Let ∠ be a graph with vertices {a, b, c} and edges {a, b} and {b, c}. The corresponding
RAAG to ∠ admits a presentation:

Γ∠ := 〈a, b, c | [a, b] = 1, [b, c] = 1〉.

For any ρ ∈ Hom(Γ∠, G), letting B := ρ(b), we have that ρ(a) := A and ρ(c) := C are in the
centralizer of B, denoted ZG(B). Conversely, for any A,C ∈ ZG(B), by letting ρ(a) := A,
ρ(b) := B, and ρ(c) = C, we define a G-representation of Γ∠. Thus,

(5.3) Hom(Γ∠, G) = {(A,B,C) ∈ G3 | A,C ∈ ZG(B)}.

Define a map πb : Hom(Γ∠, G)→ G by πb(ρ) = ρ(b).

Lemma 5.19. πb is a G-equivariant epimorphism.

Proof. Since G is an algebraic group Hom(Γ∠, G) is a subvariety of G3. Thus, πb is the
restriction (to an algebraic set) of the projection G3 → G, and hence is an algebraic map.
Since for every B ∈ G, there exists ρ : Γ∠ → G defined by ρ(a) = I = ρ(c) and ρ(b) = B,
we see that πb is surjective (and hence an epimorphism). The map πb is G-equivariant with
respect to conjugation since πb(gρg

−1) = gρ(b)g−1 = gπb(ρ)g−1. �
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By G-equivariance we have a map Hom(Γ∠, G)/G → G/Ad(G), which restricts to a map
Hom(Γ∠, G)∗/G→ G/Ad(G). By post-composing with the projection, G/Ad(G)→ G//G we
obtain a map

πb,G : X∠(G)→ G//Ad(G).

Lemma 5.20. πb,G is continuous and onto, and defines a family over G//Ad(G) ∼= Cr where
r = Rank(G).

Proof. Semisimple elements in G have closed conjugation orbits. Since for every semisim-
ple B ∈ G, there exists ρ : Γ∠ → G defined by ρ(a) = I = ρ(c) and ρ(b) = B, we
see that πb,G is surjective. Since πb is continuous and G-equivariant, the induced map
Hom(Γ∠, G)/G → G/Ad(G) is continuous with respect to the quotient topology. Conse-
quently, the restriction of domain to Hom(Γ∠, G)∗/G→ G/Ad(G) is continuous. Finally, the
quotient map G/Ad(G)→ G//G is continuous and so πb,G is continuous since composition of
continuous maps is continuous. We note that by [Ste65] that G//Ad(G) ∼= Cr where r is the
rank of G (since G is simply connected). �

Now define HomB(Γ∠, G) := π−1
b (B) for B ∈ G. Thus, we have subvarieties π−1

b,G([B]) :=

XB
∠ (G) which are isomorphic to HomB(Γ∠, G)//G. We will see examples where these fibers

are isomorphic (up to finite quotients) to free group or free abelian group character varieties.
We handle various cases of the fibers through a series of lemmata.

Equation (5.3) and the above definitions give:

Lemma 5.21. For every B ∈ G, XB
∠ (G) ∼= (ZG(B)× ZG(B))//G.

Now we consider some special cases.

Lemma 5.22. If B ∈ Z(G), then XB
∠ (G) is an irreducible component of X∠(G). It is

isomorphic to XF2(G) where F2 is a free group of rank 2.

Proof. In the special case B ∈ Z(G), we get ZG(B) = G, so the previous lemma shows that

XB
∠ (G) ∼= G2//G ∼= Hom(F2, G)//G = XF2(G),

as wanted. �

The following proposition of Springer and Steinberg will be useful in our analysis. Recall
that an element in g ∈ G is regular if the dimension of its centralizer ZG(g) is minimal
among all centralizers. This minimal dimension is just the rank of G; that is, the dimension
of a maximal torus. In fact, for a sufficient general semisimple element g (such elements are
contained in a maximal torus T ) it is true that ZG(g) = T .

The following proposition follows from [SS04, Pages 206, 221] and [Ste65, Rem. 2.10].

Proposition 5.23. Let G be a simply connected semisimple C-group. If B is regular, then
ZG(B) is a maximal torus. If A ∈ ZG(B) and A,B are semisimple, then A,B are contained
in the same maximal torus.

Let Greg := {g ∈ G | g is regular }.
Proposition 5.24. Let G be a simply connected semisimple C-group. If B ∈ Greg, then
XB
∠ (G) is a subvariety of X∠(G) isomorphic to XZ2(G). Moreover, the closure of⋃

B∈Greg

XB
∠ (G)

is a subvariety of X∠(G) isomorphic to XZ3(G).
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Proof. If B is regular then A,B,C commute by Proposition 5.23, so they define an element
in Hom(Z2, T ), and conversely. Moreover, if the triple (A,B,C) defines a polystable repre-
sentation then it consists of semisimple elements, which suffices to prove the first statement.
We now obtain a family of subvarieties Hom(Z2, ZG(B)) ↪→ Hom(Γ∠, G) parametrized by
Greg. This family consists of triples (A,B,C) of semisimple elements which can be simulta-
neously conjugated to T and B is regular. The closure, thus consists of such triples that can
be simultaneously conjugated to T (without further restriction on B). �

Corollary 5.25. If G = SL(n,C) or Sp(n,C) and B ∈ Greg and semisimple, then XB
∠ (G) ∼=

XZ2(G) and is therefore irreducible.

Proof. In these cases ZG(B) is a maximal torus T . We thus have XB
∠ (G) ∼= XZ2(ZG(B)) ∼=

T 2/W ∼= XZ2(G). From [FL14], Hom(Z2, G)//G is irreducible if and only if G is simply
connected. �

Remark 5.26. (1) More generally, the above corollary holds whenever ZG(B) is a maximal
torus, which is true when B is regular and G is simple and simply connected, by [Ste65].
(2) In [Sik14, FL14] it is shown that, for G = SL(n,C) and G = Sp(n,C) there is also an
isomorphism XZr(G) ∼= T r/W , for every r ∈ N where W is the Weyl group of G, acting
diagonally. See also [FS17].

Proposition 5.27. Let G = SL(n,C), B ∈ G and A,C ∈ ZG(B). If B is not diagonalizable
but is non-derogatory, then the triple (A,B,C) corresponding to a point in Hom(Γ∠, G) is
not polystable.

Proof. B is non-derogatory if and only if its minimal polynomial is equal to it characteristic
polynomial (this is equivalent to the eigenvalues of the Jordan blocks of B being distinct).
By [HJ13, Theorem 3.2.4.2] , we conclude that A and C are polynomials in B. Since B is
upper-triangulizable it follows that all three are upper-triangularizable and hence (A,B,C)
is not polystable since B is non-diagonalizable. �

We now look at a couple special cases.

5.3.1. G = SL(2,C). We consider three cases for B:

(1) B = ±I := ±
(

1 0
0 1

)
,

(2) B is conjugate to J± :=

(
±1 1
0 ±1

)
, or

(3) B is regular (conjugate to a diagonal matrix with distinct eigenvalues).

In Case (1), by Lemma (5.22) XB
∠ (G) is isomorphic to XF2(G) which is in this case

SL2(C)2// SL(2,C) ∼= C3

(see [Vog89]). XF2(SL(2,C)) strong deformation retracts to SU(2)2/ SU(2) which is homeo-
morphic to a closed 3-ball (see [FL09]).

In Case (2), XB
∠ (G) is empty. Indeed, by Proposition 5.27 all triples (A,B,C) with B = ±J

such that B commutes with both A and C are simultaneously upper-triangular; so the
corresponding representation will not be polystable.

In Case (3), since B is regular, by combining (5.24) with Remark (5.26), we get XB
∠ (G) ∼=

T 2/W where W ∼= Z2 is the Weyl group corresponding to T ∼= C∗. This space strong
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deformation retracts to

Hom(Z2, SU(2))/ SU(2) ∼= (S1)2/Z2
∼= S2;

see [CFLO16b, Page 20]. By Proposition (5.24) we have:⋃
B∈Greg

XB
∠ (G) ∼= XZ3(G) ∼= T 3/W.

This space strong deformation retracts to

Hom(Z3, SU(2))/ SU(2) ∼= (S1)3/Z2,

which is a 3-dimensional orbifold; see [CFLO16b, Page 23] for details and a visualization.
Summarizing, for G = SL(2,C), X∠(G) consists of exactly three irreducible (Zariski closed)

components, two corresponding to Case (1) and isomorphic to a free group character variety
XF2(G) ∼= C3, and the third, corresponding to Case (3), is isomorphic to a free abelian group
character variety XZ3(G) ∼= T 3/W (also 3 dimensional). See Figure 5.1 for a schematic
drawing of this example. We can see explicitly that each component strong deformation
retracts to the corresponding SU(2)-character variety and the union of those retracts is
exactly X∠(SU(2)).

Note that the singular locus of each component X±I∠ (G), where A and C commute (and
B = ±I), is exactly where they intersect the other irreducible component (see [FL12]).

Figure 5.1. X∠(SL(2,C))

5.3.2. G = SL(3,C). Now there are four cases to consider for the “node” b:

(1) B is central, so that B ∈ {I, ωI, ω2I} where I is the identity matrix, and ω is a third
root of unity. By Lemma (5.22), XB

∠ (G) ∼= XF2(G), where F2 is a free group of rank
2, a branched double cover of C8 (see [Law06, Law07]) homotopic to S8 (see [FL09]).

(2) B is upper triangularizable but not diagonalizable (and hence has repeated eigenval-
ues). Writing B in Jordan form, one concludes that the commutation of B with A
and C implies that either A,C are both upper-triangular too (Proposition 5.27), or
that they are both simultaneously upper-triangulizable with B (an easy calculation).
Either way the triple (A,B,C) does not correspond to a polystable G-representation.
Hence XB

∠ (G) is empty (by definition).
(3) B is regular (diagonalizable with distinct eigenvalues), which implies

XB
∠ (G) ∼= XZ×Z(G) ∼= T 2/W,
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by Proposition (5.24) where T ∼= (C∗)2 is a maximal torus and the Weyl group is the
symmetric group on 3 letters W ∼= S3. So, this is a 4-dimensional orbifold.

(4) B is diagonalizable with two repeated eigenvalues, but not central. This last case is
new (compared to the case SL(2,C)) and so we detail it below.

Denote Bλ :=

 λ 0 0
0 λ 0
0 0 λ−2

 where λ3 6= 1. If A,C ∈ ZG(B) and (A,B,C) is polystable,

then A,C are both of the form

(
X 0†

0 Det(X)−1

)
where X ∈ GL(2,C), † signifies transpose,

and 0 = (0, 0). Hence, XB
∠ (G) ∼= XF2(GL(2,C)), which is a variety of dimension 5.

By varying B over regular elements (a 2 dimensional variety) in Case (3), and over Bλ in
Case (4), and taking their closures as before, we obtain 2 irreducible components:⋃

B∈Greg

XB
∠ (G), and

⋃
Bλ

XBλ
∠ (G),

both of dimension 6, and both fibered by SL(3,C)-character varieties of either Z2 or F2.
Figure 5.2 is a schematic drawing of this example. Note that the singular locus of each
XBλ
∠ (G) (the blue curve) intersects the abelian locus T 3/S3 (yellow curve), so the diagram is

slightly misleading in that there is a continuum of such intersections.
As with SL(2,C), each of these cases corresponds to a character variety known to strong

deformation retract as required, and the SDR restricts to the intersections, providing a SDR
on the whole space.

Figure 5.2. X∠(SL(3,C))

Notice that the abelian component in both the above examples intersects every other
component. It would be interesting, given Theorem 5.14, to determine if this is a general
phenomenon for connected RAAGs.

6. Direct Products with Finite Groups

In this last section, we consider some classes of flawed groups which have a finite group
F as a direct (cartesian) factor. We consider products Γ = F ×G where G is either free or
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nilpotent. This extends the class of flawed groups further as finite-by-nilpotent and finite-
by-free groups are not, in general, free products of nilpotent groups as the next example
shows.

Example 6.1. Let A and B be groups of order greater than 3 (possibly infinite). By [Ser03,
Proposition 4] the free product A ∗ B contains a free group of rank at least 2. Let Γ be a
direct product of an finitely generated abelian groups A with a finite non-nilpotent group
F . Then Γ is finite by nilpotent but not nilpotent. If Γ was a free product of two or more
non-trivial nilpotent groups, then it would contain a free group of rank at least 2 by the
above reference; which it does not.

6.1. Finite by Free Groups are Flawed. Let Γ be isomorphic to a product F ×Fr, where
F is a finite group and Fr is a free group of rank r.

Theorem 6.2. Let F be a finite group. Then Γ ∼= Fr × F is flawed.

Proof. Consider a presentation of Γ of the form:

Γ = 〈a1, · · · , ar, b1 · · · bs | [ai, bj] = 1, Rk(b)〉 ,

where Rk(b) denote relations only among the bj’s (the ai’s are free generators of the Fr
factor).

Let ρ : Γ → G be a polystable representation to a reductive C-group, and denote Ai :=
ρ(ai) and Bj := ρ(bj). First we note that all Bj’s are elliptic. Indeed, being of finite order
implies that all their eigenvalues are complex numbers of unit norm. Moreover, since the
group they generate is compact, and all such maximal compact are conjugated, there is a
g ∈ G that simultaneously conjugates all Bj into our fixed maximal compact K ⊂ G.

The proof now proceeds as in the proof of Theorem 5.7: Denote by

Hom0(Γ, G) ⊂ Homps(Γ, G)

the subset of polystable representations with all Bi ∈ K. Since, in every G-orbit there is
g ∈ G so so that g ·Bj ∈ K, there is a natural identification between the orbit spaces:

Homps(Γ, G)//G ∼= Hom0(Γ, G)/K.

Now, as before, write the KAK decompositions: Ai = kie
xih∗i , i = 1, · · · , r, let Ai(t) :=

kie
txih∗i , and define a homotopy:

H : [0, 1]× Hom0(Γ, G) → Hom0(Γ, G)

(t, Ai, Bj) 7→ (Ai(t), Bj)

(so Bj ∈ K are kept fixed for all t). As before, H is well defined and continuous since for every
t and Ai ∈ G, the element Ai(t) is the same regardless of the initial choices (xi, ki, hi) for
Ai = Ai(0). Moreover, Proposition 5.4 shows that the commutation relations [Ai(t), Bj] = 1
are satisfied for all t ∈ [0, 1]. Since this homotopy is K-equivariant, and Hom(Γ, K)/K is
kept fixed, we have determined a SDR from Hom0(Γ, G)/K to Hom(Γ, K)/K, and so a SDR
Hom(Γ, K)/K ↪→ Homps(Γ, G)//G as wanted. �

6.2. Finite by Nilpotent Groups are Special Flawed.

Theorem 6.3. If Γ is a direct product of a nilpotent group with a finite group, then Γ is
special flawed.
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Proof. Let Γ = N ×F , where N is nilpotent and F is finite, and let a1, · · · , ar be generators
of N and b1, · · · , bs be generators of F . For a representation ρ : Γ→ G write Ai = ρ(ai) and
Bi = ρ(bi), so that:

[Ai, Aj] = [Ai, Bj] = 1

Now, let ρ : Γ→ G be a polystable representation. Then the Ai = ρ(ai) generate a reductive
nilpotent group. Hence, by Bergeron’s result [Ber15], there is some g ∈ G , such that
g · A = (gA1g

−1, · · · , gArg−1) is an r-tuple of normal matrices.
Again, let Y := Homde(Γ, G) ⊂ Y ⊂ Hom(Γ, G) be the subset of representations which

have all Ai with non-repeating eigenvalues. Then, the Kempf-Ness set of Y is given by:

KN Y
Γ = {(A1, · · · , Ar, B1, · · · , Bs) ∈ Y | Aj are normal and Bj are unitary}.

Indeed, KN Y
Γ ⊂ KN Γ consists of matrices with minimum Frobenius norm in each G-orbit,

normal matrices have the minimum norm in their respective G-orbits and, since Bj’s are
elliptic, by Corollary 5.13, they are in fact unitary.

Now, by the same argument as before, we get that KN Y
Γ is the closure of KN Y

Γ , which
means that:

KN Y
Γ = {(A1, · · · , Ar, B1, · · · , Bs) ∈ Y | Aj are normal and Bj are unitary}.

Finally, using the eigenvalue scaling map [FL14], we can show that there is a K-equivariant

SDR from KN Y
Γ to Homde(Γ, K), inducing an SDR from KN Y

Γ /K to Homde(Γ, K)/K as
wanted. �

7. Questions and Conjectures

In this final section we list some questions and conjectures for further research:

(1) From the work in [Muñ09, MMM15] it is clear that torus knots are SL(2,C)-flawed.
We will call a group a generalized torus knot group if it can be presented as

〈a1, ..., ar | anii = a
nj
j for all i, j〉

for positive integers n1, ..., nr. When r = 2 these are torus knot groups. We conjecture
that generalized torus knot groups are flawed.

(2) We know that closed hyperbolic surface groups are flawless and that was shown using
Higgs bundle theory. Given the work in [FGN19], we conjecture that all non-abelian
Kähler groups are flawless.

(3) A group is supersolvable if it admits an invariant normal series where all the factors are
cyclic groups. Finitely generated supersolvable groups generalize finitely generated
nilpotent groups. Given results in [BS53, SS04], we conjecture that finitely generated
supersolvable groups are flawed.

(4) We have shown free products of nilpotent groups are flawed (Theorem A). Are free
products of nilpotent groups amalgamated over abelian groups also flawed?

(5) Thinking more like a geometric group theorist, if two groups are commensurable, and
one is flawed, is the other also flawed?
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