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Abstract. This paper addresses the classification problem of integrable deformations of
solutions of “degenerate” Riemann–Hilbert–Birkhoff (RHB) problems. These consist of those
RHB problems whose initial datum has diagonal pole part with coalescing eigenvalues. On
the one hand, according to theorems of B. Malgrange, M. Jimbo, T. Miwa, and K. Ueno,
in the non-degenerate case, there exists a universal integrable deformation inducing (via
a unique map) all other deformations [JMU81, Mal83a, Mal83b, Mal86]. On the other
hand, in the degenerate case, C. Sabbah proved, under sharp conditions, the existence of
an integrable deformation of solutions, sharing many properties of the one constructed by
Malgrange–Jimbo–Miwa–Ueno [Sab21]. Albeit the integrable deformation constructed by
Sabbah is not, stricto sensu, universal, we prove that it satisfies a relative universal property.
We show the existence and uniqueness of a maximal class of integrable deformations all
induced (via a unique map) by Sabbah’s integrable deformation. Furthermore, we show
that such a class is large enough to include all generic integrable deformations whose pole
and deformation parts are locally holomorphically diagonalizable. In itinere, we also obtain
a characterization of holomorphic matrix-valued maps which are locally holomorphically
Jordanizable. This extends, to the case of several complex variables, already known results
independently obtained by Ph.G.A. Thijsse and W. Wasow [Thi85, Was85].
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1. Introduction

1.1. Riemann–Hilbert–Birkhoff (RHB) problems: the analytical and geometrical
settings. Consider the n-dimensional system of ordinary differential equations

z
d

dz
Y = A(z)Y, A(z) = zr

∞∑

k=0

Akz
−k, A0 6= 0, (1.1)

where the series is convergent for |z| > R1, and r is a non-negative integer, called the
Poincaré rank of (1.1) at z = ∞. In 1909, and again in 1913, G.Birkhoff addressed the
following question [Bir09, Bir13]:

Riemann–Hilbert–Birkhoff Problem (analytical version): Does it exist an analytic
matrix-valued function T (z) =

∑∞
k=0 Tkz

−k, with T0 ∈ GL(n,C) and the series converging
for |z| > R2, such that the transformed equation

z
d

dz
Z = Â(z)Z, Y (z) = T (z)Z(z), Â = T−1AT − zT−1 d

dz
T,

has a polynomial matrix coefficient of the form

Â(z) = zrÂ0 + zr−1Â1 + · · ·+ Âr, Âj ∈M(n,C)?

In general, the solvability of the RHB problem is an open problem: although several1

sufficient conditions for the solvability have been given [Bir13, JLP76, Bal90, Bol94a, Bol94b,

1More details on known results will be given in the main body of the paper, see Section 4.
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BB97][Sab07, Ch. IV], it may happen that the RHB Problem does not always admit a positive
answer (contrarily to what Birkhoff believed to have proved), see [Gan59, Mas59].

In more geometrical terms, the RHB Problem can be recast as follows:

Riemann–Hilbert–Birkhoff Problem (geometrical version): Given a trivial vector
bundle Ein on a disc D ⊆ P1 centered at z = ∞, equipped with a meromorphic connection
∇in with a pole at z = ∞, is it true that (Ein,∇in) extends to a pair (Eo,∇o), where Eo

is a trivial vector bundle on P1, and ∇o is a meromorphic connection with only another
logarithmic pole at z = 0?

If one does not insist on the triviality of the vector bundle Eo, or on the logarithmic nature
of the pole z = 0 of ∇o, then the problem is easily solvable, see [Sab98, App.A.2]. What
makes the RHB Problem difficult is the conjunction of these requirements.

This paper is devoted to the study of families of RHB problems, rather than focusing on a
single one. If (X, xo) is a pointed complex manifold, we consider families of equations (1.1),
parametrized by points of X, that is

z
d

dz
Y = A(z, x)Y, A(z, x) = zr

∞∑

k=0

Ak(x)z
−k, Ak : X →M(n,C) holomorphic,

(1.2)
with the further assumptions that A0 is not identically zero, and that the series defining
A(z, x) is convergent for |z| > R (independent of x). The family (1.2) can be interpreted
as a deformation of the equation given by the specialization x = xo. The deformation is
said to be integrable if there exist holomorphic matrix-valued functions Θ1, . . . ,ΘdimX on
{|z| > R} ×X such that (1.2) is compatible with the system of equations

d′Y = ΘY, d′ =

dimX∑

j=1

∂

∂xj
dxj , Θ(z, x) =

dimX∑

j=1

Θj(z, x)dx
j . (1.3)

In the geometrical description, the joint system of equations (1.2),(1.3) defines a flat
meromorphic connection ∇ on a trivial vector bundle E over D × X, with a pole along
{∞} × X of order r + 1. The connection ∇ is a deformation of its restriction at x = xo,
namely the connection ι∗∇ on the pulled-back vector bundle ι∗E, where ι : D → D × X,
z 7→ (z, xo).

From now on (including the main part of the paper), we consider2 the case r = 1 only. In
this case, the Birkhoff normal form reads

d

dz
Z =

(
Â0 +

1

z
Â1

)
Z, Â0, Â1 ∈M(n,C).

Given a family of RHB problems, parametrized by a pointed complex manifold (X, xo),
we can raise a legitimate question: is solvability an open property? More precisely:

2We expect that many results mentioned (or obtained) in this paper can be generalized to higher Poincaré
ranks.
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Question: Assume that the RHB problem defined by the system (1.2) is solvable when
specialized at xo ∈ X. Is it true that there exists an open neighborhood U ⊆ X of xo such
that the RHB problem is solvable when specialized at x ∈ U?

According to a theorem originally due to B.Malgrange (in [Mal83a, Th. 2.2.(1)] the result
is formulated with some un-necessary assumptions), and subsequently refined by C. Sabbah
[Sab07, Th.VI.2.1] (see also [DH21, Th. 5.1(c)]), the answer to the question above is positive
if

• the deformation is integrable,
• the manifold X is simply connected3.

Under these assumptions, one can prove the existence of a sufficiently small open neighbor-
hood U ⊆ X of xo, and the existence and uniqueness of a frame of sections of E|D×U , with
respect to which ∇|D×U has matrix of connections 1-forms

Ω(z, x) = −

(
A(x) +

1

z
Bo

)
dz − z C(x), x ∈ U, (1.4)

where A is a holomorphic matrix-valued function on U (referred to as the pole part of ∇),
Bo is a constant matrix, and C is a holomorphic matrix-valued 1-form on U (referred to as
the deformation part of ∇). See Theorem 4.5.

Remark 1.1. Assume to be given a family of RHB problems as in (1.2) (for the moment not
necessarily an integrable deformation), solvable for each value of the deformation parameter
x ∈ X. The solutions of the RHB problems define a family of equations

d

dz
Z =

(
Â0(x) +

1

z
Â1(x)

)
Z, Â0, Â1 : X → M(n,C) holomorphic. (1.5)

For each fixed x ∈ X, the solutions Z(z, x) are multivalued functions, and they manifest
both monodromy and a Stokes phenomenon (at z = ∞). The integrability condition of the
deformation can be recast in terms of the family of equations (1.5) only: one can prove that
the family of RHB is an integrable deformation if and only if the family of equations (1.5) is
weakly isomonodromic in the sense of [Guz18]. This means that there exists a fundamental

system of solutions Z(z, x) whose monodromy matrix M := Z(z, x)−1Z(e2π
√
−1z, x) does not

depend on x ∈ X. Other refined sets of monodromy data (e.g. the Stokes matrices) may still
depend on x ∈ X.

1.2 Malgrange–Jimbo–Miwa–Ueno universal integrable deformations, and its Sab-
bah’s analogue. Consider a trivial vector bundle Eo on P1, equipped with a meromorphic
connection ∇o, defined (in a suitable basis of sections) by matrix Ωo of connection 1-forms
in Birkhoff normal form, namely

Ωo(z) = −

(
Ao +

1

z
Bo

)
dz, Ao, Bo ∈M(n,C). (1.6)

By the discussion of the previous section, the germ of an arbitrary integrable deformation
(∇, E,X, xo) of (Eo,∇o) can be defined by a matrix Ω(z, x) as in (1.4), where A(xo) = Ao.

3This can always be realized up to replacing X with a simply connected neighborhood of xo.
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Denote by Mreg and Mdiag the subsets of M(n,C) of regular and diagonalizable n × n-
matrices, respectively. These sets can be defined as finite unions of smooth semi-algebraic
strata in M(n,C), called bundles of matrices, introduced by V.I.Arnol’d [Arn71], see Section
2. Each bundle of matrices is defined by fixing the “type” of the Jordan form of its elements,
i.e. by fixing the number of Jordan blocks of each size (the numerical values of the eigenvalues
is free).

As it will be explained below, the classification problem of germs of integrable deformations
of ∇o is of varying difficulty, according to which bundle the matrix Ao ∈ M(n,C) belongs
(i.e. to the Jordan form of Ao).

In the case Ao ∈ Mreg, the classification of germs of integrable deformations is completely
understood. According to a theorem of B.Malgrange [Mal83a, Mal86], indeed, there exists
a germ of universal integrable deformation (∇un,Cn,Cn,uo), where Cn denotes the trivial
vector bundle Cn×Cn over Cn. By universality we mean that any other germ (∇′, E ′, X ′, x′o)
of integrable deformation of ∇o is induced by (∇un,Cn,Cn,uo) via a unique base change,
i.e. via a unique germ of map ϕ : (X ′, x′o) → (Cn,uo). See Theorem 4.7.

In the case Ao ∈ Mreg ∩ Mdiag, a more detailed description of the universal integrable
deformation ∇un is available. In this semisimple-regular case, it follows from independent
results of B.Malgrange and M. Jimbo, T.Miwa, K.Ueno [JMU81, Mal83b, Mal86] that the
germ of the universal integrable deformation ∇un can be defined (in a suitable basis of section
of the trivial bundle Cn) by the matrix

ΩJMUM(z,u) = −

(
−Λ(u) +

1

z
(B′

o + [Γ(u),Λ(u)])

)
dz

− zdΛ(u)− [Γ(u), dΛ(u)], u ∈ D (1.7)

where

• D ⊆ Cn is a sufficiently small polydisc centered at uo ∈ Cn,
• Λ(u) = diag(u1, . . . , un), where u ∈ Cn,
• B′

o = diag(b1, . . . , bn) is a constant diagonal matrix,
• Γ = (Γij)

n
ij=1 is an off-diagonal matrix.

Moreover, these data are such that:

(1) there exists P ∈ GL(n,C) such that P−1AoP = Λ(uo), and the diagonal part of
P−1BoP equals B′

o,
(2) and ∇un is formally equivalent, at z = ∞, to the matrix connection −d (zΛ(u)) −

B′
o
dz
z

.

As long as the matrix Ao is not a regular matrix, the classification problem of germs of
integrable deformations of ∇o becomes extremely more difficult4. In this paper, we address
the classification problem of germs of integrable deformations of ∇o, in the case Ao ∈ Mdiag

only, i.e. Ao is a diagonalizable matrices with possibly non-simple spectrum.

4By quoting B. Malgrange [Mal83a, Rk. 3.8]: «[. . . ] le problème de trouver les solutions [of the integrability
equations] passant par un Ao non régulier semble très difficile.»
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In the case Ao ∈ Mdiag, in [Sab21] C. Sabbah considered a connection ∇o satisfying the
following Property of Partial Non-Resonance (for short, Property PNR):

Property PNR: There exists a matrix P ∈ GL(n,C) diagonalizing Ao, i.e. P−1AoP =
Λo = diag(u1o, . . . , u

n
o ), and such that the matrix Bo := P−1BoP has the following properties:

(⋆) B′′
o ∈ Im ad(Λ(uo)).

(⋆⋆) B′
o is partially non-resonant, i.e. we have (B′

o)ii − (B′
o)jj /∈ Z \ {0} whenever uio = ujo.

Remarkably, under this assumption, Sabbah proved the existence of a germ of integrable
deformation of ∇o of the form (1.7), and satisfying the properties (1) and (2) above. For an
analytical proof of Sabbah’s result, see [Cot21a].

Although the integrable deformation constructed by Sabbah shares many properties of the
Malgrange–Jimbo–Miwa–Ueno connection ∇un, no claim of universality was formulated in
[Sab21]. On the one hand, this is coherent with the fact that, in general, there is no versal
deformation of ∇o if Ao is not regular (see e.g. Appendix A.2). On the other hand, we will
prove that Sabbah’s connection still enjoys a relative universality property: this was one of
the motivating themes of the current work.

Remark 1.2. When n = 2, the cases Ao ∈ Mreg and Ao ∈ Mdiag are exhaustive. In such
a case a complete classification of germs of integrable deformation has been developed in
the very interesting preprint [Her21]. In the current paper, we address the case of arbitrary
n, and we do not obtain a complete classification as in loc. cit.. Our results, however, still
emphasize the richness of the classification in the non-regular case.

1.3. Results. The first main result of this paper is of preliminary nature, framed in the
general study of operator-valued holomorphic functions. It consists of a characterization of
matrix-valued holomorphic functions A : X → M(n,C), defined on a complex manifold X,
which are locally holomorphically Jordanizable. We say that A is locally holomorphically
Jordanizable at xo ∈ X if there exist an open neighborhood U ⊆ X of xo and a holomor-
phic function P : U → GL(n,C) such that P−1AP is in Jordan canonical form. Clearly, a
necessary condition for A to be locally holomorphically Jordanizable at xo is

(I) the existence of a holomorphic function J : U → M(n,C), in Jordan canonical form
for any x ∈ U , and similar to A(x) for any x ∈ U .

The validity of condition (I) only, however, is not sufficient. Set

• σ(A(x)) to be spectrum (i.e. the set of eigenvalues) of A(x) for any x ∈ X;
• λ1, . . . , λr : U → C to be the holomorphic eigenvalues functions of A|U (without

counting multiplicities);
• coal(A) ⊆ X to be the coalescence locus of A, namely the set of points x ∈ X such

that

∀V neigh. of x, ∃ z ∈ V : card σ(A(z)) > card σ(A(x));

• Gn to be the disjoint union of complex Grassmannians of subspaces in Cn, i.e. Gn =∐n
k=0G(k, n) (with the complex analytic topology).

In Theorem 3.21, we prove that A is locally holomorphically Jordanizable at xo if and only
if conditions (I) above, (II) and (III) below hold true:
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(II) For each i = 1, . . . , r, the function ψi : U \ coal(A) → Gn defined by x 7→ ker(A(x) −
λi(x)Idn)

n admits a limit Li ∈ Gn at x = xo.

(III) We have
⊕r

i=1 Li = Cn.

Moreover, standing on results of W.Kaballo [Kab76], we prove that the limit Li, with
i = 1, . . . , r, necessarily equals the space K[(A − λiId)

n; xo] of values at xo of Cn-valued

holomorphic functions in the kernel sheaf ker (A− λiId)
n of the morphism of OX-modules

(A− λiId)
n : O

⊕n
X → O

⊕n
X .

We also prove that condition (II) is equivalent to the condition

(II.bis) the function U ∋ x 7→ dimK[(A−λiId)
n; x] is continuous at xo, for any i = 1, . . . , r.

Theorem 3.21 extends to the case of several complex variables previous results of Ph.G.A.
Thijsse and W.Wasow, independently obtained in [Thi85, Was85]. See Corollary 3.24.

Remark 1.3. Let us stress the main differences of our results with those of [Thi85, Was85]:

(1) The results of both Thijsse and Wasow work under the assumption dimCX = 1 (more
precisely, X ⊆ C is an open region). In this case, condition (II) above is automatically
satisfied. Thijsse realized this standing on the results of [BKL75]. Alternatively, we
will deduce this from results of W.Kaballo [Kab76, Kab12].

(2) Wasow’s Theorem actually works under the further assumption coal(A) = ∅. In such
a case, also condition (III) is automatically satisfied.

(3) Thijsse’s and Wasow’s results are statements of global holomorphic similarity. If
X ⊆ C is an open region, and if A is locally holomorphically Jordanizable at each
point x ∈ X, then one can prove that there exists a globally defined holomorphic
matrix T : X → GL(n,C) such that T (x)−1A(x)T (x) is in Jordan form. This actually
is an important peculiarity of all 1-dimensional Stein manifolds X, see [Gur88, Lei20,
For17] and Theorem 3.1.

To the best of our knowledge, our characterization of locally holomorphically Jordanizable
matrices, depending on several complex variables, was never explicitly formulated in lit-
erature. The local holomorphic Jordanizability condition plays a crucial condition in the
theory of isomonodromic deformations at irregular singularities with coalescing eigenvalues
[CG18, CDG19]. We expect that our characterization will be useful for generalizing re-
sults of [CG18, CDG19], as well as for the study of strata of Dubrovin–Frobenius and flat
F -manifolds [CG17, CDG20, Cot21b].

The second main results of the paper concerns the classification problem of integrable
deformations of ∇o defined by (1.6). We first introduce several classes of germs of integrable
deformations of ∇o, namely:

• the class I(∇o) of all germs of integrable deformations of ∇o;
• the class Id(∇

o) of germs of diagonal type (d-type) integrable deformations of ∇o,
that is those integrable deformations whose pole and deformation parts (A and C in
equation (1.4)) are locally holomorphically diagonalizable;

• the class I
gen
d (∇o) of germs of generic d-type integrable deformations of ∇o, that

is those integrable deformations (∇, E,X, xo) of ∇o of d-type whose pole part has
holomorphic diagonal form ∆0 = diag(f1(x), . . . , fn(x)) with dxo

fi 6= dxo
fj for i 6= j;
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• the class Idv(∇
o) of germs of diagonal-vainshing type (dv-type) integrable deforma-

tions of ∇o, that is those integrable deformations (∇, E,X, xo) which are defined (in
a suitable basis) by a matrix of connection 1-forms

Ω̃(z, x) = −

(
∆0(x) +

1

z
B(x)

)
dz − z d∆0(x) +̟(x),

where the ∆0 and B are holomorphic matrix-valued functions, and̟ is a holomorphic
matrix-valued 1-form such that5

∆0(x) = diag(f1(x), . . . , fn(x)), B′′ = [L,∆0], ̟′′ = [d∆0,L],

for a holomorphic matrix-value function L : X → M(n,C), L = L′′;
• the class Ifs(∇

o) of germs of formally simplifiable integrable deformations of ∇o which
are formally equivalent, at z = ∞, to the connection

d− d(z∆0(x))−B
′
o

dz

z
,

where ∆0(x) = diag(f1(x), . . . , fn(x)) and B′
o is a diagonal constant matrix.

In Theorems 4.24 and 4.25 we show that

(1) if Ao ∈ Mreg ∩Mdiag, then we have

∅ 6= I
gen
d (∇o) ( Ifs(∇

o) = Idv(∇
o) = Id(∇

o) = I(∇o),

(2) while if Ao ∈ Mdiag and the Property PNR holds true, then we have a more rich
classification, since

∅ 6= I
gen
d (∇o) ( Ifs(∇

o) ⊆ Idv(∇
o) ⊆ Id(∇

o) ⊆ I(∇o),

where all the inclusions are in general strict (see e.g. Example 4.21).

For clarity of exposition, let us denote with the unified notation6 ∇JMUMS the integrable
deformation of ∇o constructed by Jimbo–Miwa–Ueno–Malgrange (in the case Ao ∈ Mdiag ∩
Mreg), and by Sabbah (in the case Ao ∈ Mdiag & Property PNR). In Theorem 4.31 we further
show the existence and uniqueness of a class IJMUMS of germs of integrable deformations of
∇o such that

(1) the integrable deformation ∇JMUMS is an element of IJMUMS,
(2) any germ of integrable deformation, which is induced by ∇JMUMS via a base change

map, is an element of IJMUMS,
(3) IJMUMS is maximal with respect to the properties above.

Moreover, we show that if a germ of integrable deformation is induced by ∇JMUMS via a
base change map, then the germ of such a map is unique. For short, we say that ∇JMUMS is
IJMUMS-universal, see Definition 4.29.

In the case Ao ∈ Mreg ∩ Mdiag, we necessarily have IJMUMS = I(∇o) by universality of
the JMUM integrable deformation. In the more general case Ao ∈ Mdiag & Property PNR,
we show that IJMUMS is large enough to satisfy the inequality

I
gen
d (∇o) ⊆ IJMUMS ⊆ Ifs(∇

o). (1.8)

5Here, and in the main body of the text, we denote by M ′ the diagonal part of a matrix M , and by
M ′′ = M −M ′ its off-diagonal part.

6Here JMUMS stands for Jimbo–Miwa–Ueno–Malgrange–Sabbah.



9

In addition to that, in Appendix A.3 we show that the validity of the PNR condition is
a sharp condition for the results above. More precisely, we exhibit a connection ∇o with
Ao ∈ Mdiag and for which the Property PNR cannot hold true: we show that the germs
in I

gen
d (∇o) cannot be induced by a single germ of integrable deformation, in opposition to

(1.8).

The proof of the left inequality in (1.8) is based on a remarkable initial value property
of an overdetermined system of non-linear PDEs, that we call generalized Darboux–Egoroff
equations. Consider n holomorphic functions f1(x), . . . , fn(x) in d complex variables x =
(x1, . . . , xd). Let b1, . . . , bn ∈ C be arbitrary constants. The generalized Darboux–Egoroff
system DEd,n((fi)

n
i=1; (bi)

n
i=1), in the n2 − n unknown functions (Fkh(x))

n
k,h=1, with k 6= h, is

given by

(∂jfh − ∂jfk)∂iFkh − (∂ifh − ∂ifk)∂jFkh =
n∑

ℓ=1

(∂ifℓ − ∂ifk)(∂jfh − ∂jfℓ)FkℓFℓh −
n∑

ℓ=1

(∂jfℓ − ∂jfk)(∂ifh − ∂ifℓ)FkℓFℓh,

(fh − fk)∂iFkh = (bh − bk − 1)(∂ifh − ∂ifk)Fkh

+

n∑

ℓ=1

(∂ifℓ − ∂ifk)(fh − fℓ)FkℓFℓh −
n∑

ℓ=1

(fℓ − fk)(∂ifh − ∂ifℓ)FkℓFℓh,

for any i, j = 1, . . . , d, and any k, h = 1, . . . , n, with k 6= h. The solutions Fkh of this system
can be arranged in an off-diagonal matrix F : U ⊆ Cd →M(n,C).

Theorem 4.28, which is the third main result of the paper, asserts that

• if xo ∈ Cd,
• if dxo

fk 6= dxo
fk for any h, k = 1, . . . , n, with k 6= h,

• if bh − bk 6∈ Z \ {0} whenever fh(xo) = fk(xo),

then any formal power series solution F of DEd,n((fi)
n
i=1; (bi)

n
i=1), centered at xo, is uniquely

determined by its initial value F (xo). Consequently, the same result holds for any analytic
solution defined in a neighborhood of xo. This generalizes the results of [Cot21a, Lemma
5.21] [Cot21b, Lemma 6.16] for the (standard) Darboux–Egoroff equations.

1.4 Structure of the paper. In Section 2, we review the theory of bundles of matrices,
introduced by V.I.Arnol’d. Special emphasis is given on both geometrical and combinatorial
aspects of the theory. In particular, we review its connection with the theory of double
partitions of integers (an aspect which is missing in the original source [Arn71]), as well as
some of the main results on the semi-algebraic stratification of the space of matrices defined
by the bundles.

Section 3 is devoted to the study of matrix-valued holomorphic maps which are lo-
cally/globally holomorphically similar. After reviewing known results due to R.M.Guralnick,
J. Leiterer, and F. Forstnerič, we address the study of Jordan forms of matrix-valued holo-
morphic maps. The first main result of the paper, Theorem 3.21, is formulated and proved.

In Section 4, we first review known results on families of RHB problems due to B.Malgrange,
M. Jimbo, T.Miwa, K.Ueno, and C. Sabbah. We subsequently introduce several classes
(d/dv/fs-types) of germs of integrable deformations of a solution of a RHB problem, and
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we study their inclusive relations, see Theorems 4.24 and 4.25. We introduce the notion
of I-universality, and we prove that the Sabbah’s integrable deformation satisfies a relative
universal property for a suitable maximal class IJMUMS, see Theorem 4.31. Furthermore,
we study the generalized Darboux–Egoroff system of PDEs, and we prove its initial value
property, Theorem 4.28.

In Appendix A.1, we recall Malgrange’s proof of existence of a universal integrable defor-
mation for the connection (1.6) with Ao ∈ Mreg.

In Appendix A.2, we show via an example that if Ao 6∈ Mreg, then in general there is no
versal integrable deformation of (1.6).

In Appendix A.3, we show via an example that the Property PNR is a sharp condition
for the existence of an integrable deformation inducing all germs of integrable deformations
of generic d-type.

Acknowledgements. The author is thankful to R.Conti, G.Degano, D.Guzzetti, C.
Hertling, P. Lorenzoni, D.Masoero, A.T.Ricolfi, and C. Sabbah for several valuable discus-
sions. This research was supported by the FCT Project PTDC/MAT-PUR/ 30234/2017
“Irregular connections on algebraic curves and Quantum Field Theory”.

2. Bundles of matrices

In what follows by multiset we mean a pair (A,m) where A is a finite set and m : A→ N∗

is an arbitrary function, called multiplicity function. More informally, a multiset consists of
a finite collection of objects (the elements) which may occur more than once: the element
a ∈ A will occur exactly m(a) times.

For short, we will represent multisets by listing their elements, with multiplicity, between
{{. . .}} brackets.

Partitions of integers provide examples for multisets. Given a non-negative number n, a
multiset λ = {{λ1, . . . , λr}} of non-negative integers is a partition of n provided that n =∑r

i=1 λi. We denote by P(n) the set of partitions of n.

2.1. Double partitions. A double partition of a positive integer n is a double sum repre-
sentation of n as follows

n = n1 + · · ·+ nk, nj = bj1 + · · ·+ bjlj , j = 1, . . . , k, (2.1)

with bij ∈ Z>0, and where k, l1, . . . , lk are arbitrary positive integers. The numbers n1, . . . , nk

are the rough parts of the double partition, whereas the numbers bij are its fine parts. The
order of rough parts, and of fine parts –inside a single rough part– is not relevant.

A double partition of n can thus be identified with the datum of a multiset of ordinary
partitions of the summands ni’s, with i = 1, . . . , k. We denote by P(2, n) the set of double
partitions of n, and by p(2, n) its cardinality.

For short, we use the notation b = {{b11, . . . , b1l1 ; . . . ; bk1, . . . , bklk}} for the multiset of
partitions. The integer k is the rough length of b, denoted by ||b||, whereas the integers
l1, . . . , lk are the fine lengths of b.
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If b = {{b11, . . . , b1l1 ; . . . ; bk1, . . . , bklk}} ∈ P(2, n), without loss of generality we may (and
will) assume that b is monotonically ordered: this means that bj1 > bj2 > · · · > bjlj for any
j = 1, . . . , k.

2.2. Bundles of matrices. Given n ∈ N∗, we denote by M(n,C) the complex vector space
of n× n-matrices.

Two matrices A1, A2 ∈ M(n,C) have the same Jordan type if their Jordan forms differ
by their eigenvalues only, the number of distinct eigenvalues and the orders of the Jordan
blocks being the same. A bundle of matrices is a maximal set of matrices with the same
Jordan type.

Bundles of matrices are in 1-1 correspondence with double partitions of n.

Given the double partition λ = {{λ11, . . . , λ1l1 ; . . . ;λk1, . . . , λklk}}, we define Mλ to be set
the of matrices with Jordan form

k⊕

i=1

li⊕

j=1

Jλij
(µi), Jh(µ) =




µ 1 0 . . .
0 µ 1 . . .
...

. . .

0 . . . µ


 ∈M(h,C). (2.2)

The partition {{λi1, . . . , λili}} is called the Segre characteristic of the eigenvalue µi.

The space M(n,C) admits thus a decomposition into bundles,

M(n,C) =
∐

λ∈P(2,n)

Mλ,

where each bundle Mλ is a smooth semi-algebraic submanifold of M(n,C).
We will also adopt the following notation: the bundle Mλ, associated with λ ∈ P(2, n)

will be labelled by the string

µλ11
1 µλ12

1 . . . µλ21
2 µλ22

2 . . . µλk1
k µλk2

k . . .

where µ1, . . . , µk denote distinct eigenvalues.

For example, for n = 2, we have 3 bundles of matrices, labelled by

µ1µ2, µ2
1, µ1µ1,

which correspond to the Jordan forms
(
µ1 0
0 µ2

)
,

(
µ1 1
0 µ1

)
,

(
µ1 0
0 µ1

)

respectively.

For n = 3, we have 6 bundles of matrices, labelled by

µ1µ2µ3, µ2
1µ2, µ1µ1µ2, µ3

1, µ2
1µ1, µ1µ1µ1.
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2.3. Number of bundles. By the preceding paragraph, the number of bundles of matrices
in M(n,C) equals the number p(2, n) of double partitions of n. The first values of p(2, n),
for n = 1, . . . , 20, are

1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622,

31877, 57100, 101887, 180406, 318106, . . .

The history of this numerical sequence is quite rich and interesting. In 1854, A.Cayley
first introduced and studied the sequence of numbers p(2, n), see [Cay55]. He claimed that
the same numbers arise in the classification of homographies of the projective space Pn.
Furthermore, Cayley noticed that the first numbers of this sequence (minus 2, and with
some computational mistakes for n = 5, 7, 8) appeared in [Syl51], a study of intersections
of quadrics by J.J. Sylvester. Subsequently, all these research directions were extensively
developed by C. Segre. In 1883, C. Segre completed the classification of intersection of two
quadrics in a projective space, one of the main topics of his Tesi di Laurea [Seg83, Pt. II, §3].
Moreover, in [Seg12, Ch. II.14] Segre presented a complete classification of collineations in
projective spaces. In both classification problems, a multiset of partitions (the Segre symbol)
is a classifying invariant. Segre symbols are indeed double partitions of integers, and their
number thus equal p(2, n). For further details see [HP94a, Book II, Ch.VIII] [HP94b, Book
IV, Ch.XIII, §10–11]. See also [Bel16, FMS21].

Introduce the generating function

P(2; z) :=

∞∑

n=0

p(2, n)zn, p(2, 0) := 1.

Denote by p(n) the number of ordinary partitions of n.

Theorem 2.1 ([Cay55]). We have

P(2; z) =

∞∏

n=1

(1− zn)−p(n).

Proof. For n ∈ N, the number p(2, n) equals the number of representations of n as following
sums

n =
∞∑

k=1

k(mk,1 + · · ·+mk,p(k)), mi,j > 0.

This follows from the interpretation of a double partition as a multiset of partitions, and the
mi,j’s represent the multiplicities. We have

∞∏

n=1

(1− zn)−p(n) =
∞∏

n=1

∞∑

mj=0
16j6p(n)

zn(m1+···+mp(n)) =
∞∑

mi,j=0
16i,j

z1m1,1+2(m2,1+m2,2)+.... �

Corollary 2.2. We have the recursive formula

p(2, n) =
1

n

n∑

k=1

σ(k)p(2, n− k), σ(k) :=
∑

d|k
d · p(d).
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Proof. From Theorem 2.1, we obtain logP(2, z) =
∑∞

n,m=1
p(n)
m
znm. The recursive formula

follows from the identity d
dz
P(2, z) = P(2, z) d

dz
(logP(2, z)). �

The numbers p(2, n) have an exponential growth, as described by the following result, due
to R.Kaneiwa and V.M.Petrogradsky, which provides an analog of the well-known Hardy–
Ramanujan asymptotic formula for p(n), see [HR18].

Theorem 2.3 ([Kan79, Kan80, Pet99]). We have the following asymptotic expansion

ln p(2, n) =

(
π2

6
+ o(1)

)
n

lnn
, n→ ∞. �

Remark 2.4. Although [Kan79, Kan80] provide more precise terms of the expansion, the
results of [Pet99] have wider implications. Ordinary partitions and double partitions are
just the first instances of r-fold partitions, defined as representations of an integer n ∈ N
as r-fold sums of non-negative integers, see [Kan79]. Denoting by p(r, n) the number of
r-fold partitions of n, with p(r, 0) := 1 for any r > 1, the generating function P(r, z) :=∑

n p(r, n)z
n satisfies the identity

P(r, z) =

∞∏

n=1

(1− zn)−p(r−1,n), r > 2.

See [Kan79]. As an application of [Pet99, Th. 2.1], one obtains that

ln p(r, n) =

(
π2

6
+ o(1)

)
n

ln(r−1) n
, n→ ∞,

where ln(k) x := ln ln . . . ln︸ ︷︷ ︸
k times

x for k > 1. More general applications of [Pet99, Th. 2.1] allows

an estimate of the growth of the number of some generalized partitions, and growth of free
polynilpotent finitely generated Lie algebras. See also [Pet00].

2.4. Bundles as fibered spaces. Given a = (a1, . . . , ah) ∈ Nh, with h > 1, set |a| :=∑h
j=1 aj . Let Sa to be the subgroup of the symmetric group S|a| defined by Sa := Sa1 ×

· · · × Sah , where Sai is the symmetric group on the elements {(
∑i−1

k=1 ai) + 1, (
∑i−1

k=1 ai) +

2, . . . ,
∑i

k=1 ai}, for i = 1, . . . , h.

Define the configuration space Ca of |a| colored points in the plane as the quotient

Ca :=
(
C|a| \∆

)
/Sa,

where ∆ be the union of big diagonal hyperplanes in Cn, defined by the equations

∆ :=
⋃

i<j

{u ∈ Cn : ui = uj}.

The tuple a dictates the coloring of the points: in total we have h colors, and for each
i = 1, . . . , h we have ai points with the same i-th color. The order of points with the same
color is not relevant.

The bundles Mλ are fibered spaces over suitable colored configuration spaces Ca. More
precisely, for each λ ∈ P(2, n) denote by mλ = (m1, . . . , mh) ∈ Nh the tuple of multiplicities
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Figure 1. Hasse diagram of the closure stratification of bundles in M(4,C).
The numbers on the top row denote the dimensions of the bundles.

of the elements of the multiset λ. We have a natural map πλ : Mλ → Cmλ
, defined by

associating to a matrix A its colored spectrum, i.e. the set of its colored distinct eigenvalues.
Two distinct eigenvalues have the same color if they have the same Segre characteristics.
The fibers of πλ are similarity orbits of the Jordan matrices (2.2).

Theorem 2.5 ([Arn71]). The codimension of the bundle Mλ equals

c =




||λ||∑

j=1

λj1 + 3λj2 + 5λj3 + . . .


− ||λ||.

Proof. The dimension of Mλ equals the dimension of the base space Cmλ
plus the dimension

of the fiber. We have dim Cmλ
= ||λ||, and the codimension of the similarity orbit of the

Jordan matrix (2.2) equals the first summand above. See [Gan59, Ch.VIII]. �

2.5. Stratification of bundles. The decomposition M(n,C) =
∐

λ∈P(2,n) Mλ defines a

semi-algebraic stratification of the space of matrices: the family (Mλ)λ∈P(2,n) is locally

finite, and if Mλ ∩Mν 6= ∅ then Mλ ⊆ Mν .

Define the relation E on the set of bundles in M(n,C) by

Mλ EMν :⇐⇒ Mλ ⊆ Mν .

The relation E defines a partial ordering on bundles, called closure relation. Such a relation
has been extensively studied in [BHM98, DE95, EEK97, EEK99, EJK03]. A convenient way
to visualize7 the closure stratification of bundles is via the Hasse diagram of the relation E:
each bundle Mλ is represented by a point in the plane (the vertices of the diagram), and
one draws an arrow from v1 to v2 if v2 covers v1 (i.e. we have v1 E v2 and there is no v3 such
that v1 E v3 E v2). See Figure 1.

Introduce the following two types of elementary transformations of λ:

Type I. λ → λ
′, where λ

′ is obtained by “merging” two distinct partitions inside λ, say
{{λi1, . . . , λili}} and {{λj1, . . . , λjlj}} with i 6= j, in the single one

λi1 + λj1 > λi2 + λj2 > λi3 + λj3 > . . .

7We invite the reader to use the software StratiGraph, developed at the Umeå University (Swe-
den), to visualize the Hasse diagrams in low dimensions. The software is available at the web-page
https://www.umu.se/en/research/projects/stratigraph-and-mcs-toolbox/
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The resulting rough length ||λ′|| equals ||λ|| − 1.

Type I. λ → λ
′, where λ

′ is obtained as follows. Fix i ∈ {1, . . . , k}, and consider the
Ferrers diagram corresponding8 to the partition λi = {{λi1, . . . , λili}} inside λ. Then move
one box rightward one column, or downward one raw, so long as the corresponding partitions
λ′i remains monotonic. The double partition λ

′ is obtained by λ by replacing λi 7→ λ′i. The
resulting rough length ||λ′|| equals ||λ||.

Theorem 2.6 ([EEK99, Th. 2.6]). Let

λ = {{λ11, . . . , λ1l1 ; . . . ;λk1, . . . , λklk}}, λ
′ = {{λ′11, . . . , λ

′
1l′1
; . . . ;λ′k′1, . . . , λ

′
k′l′

k
}},

be two double partitions of n, with k′ 6 k. We have Mλ′ E Mλ if and only if λ
′ can be

obtained from λ via a finite sequence of transformations of type I and II.
If λ and λ

′ are related by a single transformation of type I and II, then there is an arrow
from λ

′ to λ in the Hasse diagram of the closure relation E. �

Remark 2.7. Transformations of Type I correspond to coalescences/splittings of eigenval-
ues.

The following result gives some insights into the difficulty of the decision procedure for
testing the closure relation.

Theorem 2.8 ([EEK99, Th. 2.7]). Deciding whether a bundle is in the closure of another
bundle is an NP-complete problem. �

2.6. Conjugate bundles, and sets Mreg, Mdiag. The set P(n) of ordinary partitions of
n is equipped with a natural involution (−)∨ : P(n) → P(n), called conjugation.

The easiest way to define it is in terms of Ferrers diagrams. Given λ ∈ P(n), with
associated Ferrers diagram Fλ, the conjugate partition λ∨ is the one associated with the
transposed Ferrers diagram F T

λ (i.e. the diagram obtained by flipping Fλ along its main
diagonal, by turning rows to columns, and vice-versa).

This involution λ 7→ λ∨ naturally extends to double partitions. Given a double partition
λ = {{λ1, . . . , λr}} in P(2, n), its conjugate λ

∨ is obtained by applying (−)∨ elementwise,
that is

λ
∨ = {{λ∨1 , . . . , λ

∨
r }}.

We say that two bundles Mλ1 and Mλ2 are conjugate, if λ1 and λ2 are conjugate double
partitions via (−)∨.

Introduce the following two subsets R,D ⊆ P(2, n): let R to be the set of double parti-
tions of n whose fine lengths equal 1, and let D to be the set of double partitions whose fine
parts equal 1.

Lemma 2.9. Elements of R are conjugate of elements of D, and vice-versa. �

Define the following unions of bundles

Mreg :=
∐

λ∈R
Mλ, Mdiag :=

∐

λ∈D
Mλ.

8In the first column we have λi1 boxes, in the second column we have λi2 boxes, . . . and so on.
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The set Mreg equals the set of regular matrices, that is the set of matrices A ∈ M(n,C)
satisfying one (and hence all) of the following equivalent conditions:

(1) the characteristic polynomial of A equals its minimal polynomial,
(2) the centralizer of A in M(n,C) is of minimal dimension (i.e. it equals n),
(3) the centralizer of A in M(n,C) is C[A].

The set Mdiag is the set of diagonalizable matrices, with possibly non-simple spectrum.

3. On the similarity and the Jordan forms of holomorphic matrices

3.1. Global and local holomorphic similarity. Let X be a complex manifold. Two
holomorphic maps A1, A2 : X →M(n,C) are said to be

• (globally) holomorphically similar on X if there exists a holomorphic map H : X →
GL(n,C) such that A1 = H−1A2H .

• locally holomorphically similar at xo ∈ X if there exists a neighborhood U ⊆ X of xo
such that A1|U and A2|U are holomorphically similar on U .

Analogue definitions of continuous or Ck-smooth similarity, with 0 6 k 6 ∞, can be given,
according to the regularity of the matrix-valued function H above.

The problem of upgrading local to global holomorphic similarity has been addressed in
[Gur88, Lei20, For17]. The following positive results have been obtained, provided that X
is a Stein space.

Theorem 3.1 ([Gur88, Lei20, For17]). Let X be a one dimensional Stein manifold, and
A1, A2 : X →M(n,C) be two holomorphic maps. If A1, A2 are locally holomorphically similar
at each point of X, then they are globally holomorphically similar on X. �

In the original proof of R.M.Guralnick, X is assumed to be a noncompact connected
Riemann surface only. Recently, J. Leiterer extended Guralnick’s result to all one dimensional
Stein spaces (not necessarily smooth): his proof is based on the Oka principle for Oka pairs
by O.Forster and K.J.Ramspott [FR66]. An alternative proof of this result also appears in
the book [For17], where it is invoked an alternative Oka principle established in [For03].

For Stein spaces of arbitrary dimensions, we have the following result, which requires
stronger assumptions.

Theorem 3.2 ([Lei20, Th. 1.4]). Let X be a Stein space, and A1, A2 : X →M(n,C) be two
holomorphic maps such that:

(1) A1 and A2 are globally continuously similar on X, i.e. there exists a continuous map
C : X → M(n,C) such that A1 = C−1A2C,

(2) A1 and A2 are locally holomorphically similar at each point of X, i.e. for each xo ∈ X
there is a neighborhood Uo of xo, and a holomorphic map Ho : Uo → GL(n,C) with
A1 = H−1

o A2Ho on Uo,
(3) we have Ho(xo) = C(xo) for each xo ∈ X.

Then A1 and A2 are globally holomorphically similar on X. �

Conditions (1) and (2) alone do not imply global holomorphic similarity. For a counterex-
ample, see [Lei20, Th. 8.2].
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3.2. Three criteria for local holomorphic similarity. Let X be a complex manifold,
A1, A2 : X → M(n,C) be two holomorphic maps, xo ∈ X, and Φ ∈ M(n,C) such that
ΦA1(xo) = A2(xo)Φ.

Below are some criteria on X,A1, A2,Φ which will allow to infer local holomorphic simi-
larity of A1 and A2 on a neighborhood of xo. Following Leiterer, we will call them Wasow’s,
Smith’s, and Spallek’s criterion respectively.

Wasow’s criterion: The dimension of the complex vector space

{Θ ∈ M(n,C) : ΘA1(x) = A2(x)Θ}

is constant for x in some neighborhood of xo.

Smith’s criterion: The space X is one dimensional, and there exist a neighborhood Vo of
xo and a continuous map Co : Vo →M(n,C) such that CoA1 = A2Co on Vo, and Co(xo) = Φ.

Spallek’s criterion: There exist a neighborhood Vo of xo and a smooth map To : Vo →
M(n,C) such that ToA1 = A2To on Vo, and To(xo) = Φ.

Theorem 3.3 ([Lei20, Th. 1.5]). If one of the criteria above holds, then there exists a neigh-
borhood Uo of xo and a holomorphic map Ho : Uo →M(n,C) such that HoA1 = A2Ho on Uo,
and Ho(xo) = Φ. In particular, if Φ is invertible, then A1 and A2 are locally holomorphically
similar. �

Remark 3.4. The names of the criteria are justified as follows. In [Was62], W.Wasow
formulated the first criterion and proved the statement of Theorem 3.3 under the unnecessary
assumption that X is a domain in C. The proof of Theorem 3.3 under the Smith’s criterion
is based on applications of the Smith factorization theorem, see [Jac75, Ch. III, Sec. 8] [GL09,
Th. 4.3.1]. On the other hand, the proof of Theorem 3.3 under the Spallek’s criterion follows
from a special case of a result of K. Spallek, see [Spa65, Satz 5.4] [Spa67, Introduction].

Spallek’s criterion and Theorem 3.2 imply the following result.

Corollary 3.5. Let X be a Stein manifold. Let A1, A2 : X → M(n,C) be two holomorphic
maps, globally C∞-smoothly similar on X. Then A1 and A2 are globally holomorphically
similar on X. �

Remark 3.6. The statement of this corollary is optimal: the C∞-smoothness condition
cannot be replaced by a Ck-smoothness with k <∞. See [Lei20, Th. 8.2].

Smith’s criterion allows to strengthen Theorem 3.1 as follows.

Corollary 3.7. Let X be a one dimensional Stein manifold, and let A1, A2 : X → M(n,C)
be two holomorphic maps. If A1 and A2 are locally continuously similar at each point x ∈ X,
then they are globally holomorphically similar on X. �

3.3. Holomorphically Jordanizable matrices. LetX be a complex manifold, andA : X →
M(n,C) be a holomorphic map.

We say that A is locally holomoprhically Jordanizable (or similar to a Jordan matrix) at
xo ∈ X if there exists a neighborhood U ⊆ X of xo, and a holomorphic map S : U →
GL(n,C) such that

J(x) = S(x)−1A(x)S(x), x ∈ U, (3.1)
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is a Jordan matrix for each x ∈ U . If one can take U = X, then we say that A is globally
holomorphically Jordanizable.

Given Φ ∈ M(n,C), denote by σ(Φ) the spectrum of Φ, i.e. the set of its eigenvalues.
Furthermore, for λ ∈ σ(Φ) and k = 1, . . . , n, denote by ϑk(Φ, λ) the number of Jordan
blocks of size k and eigenvalue λ in the Jordan form of Φ, and set

ϑk(Φ) :=
∑

λ∈σ(Φ)

ϑk(Φ, λ).

Lemma 3.8. If A : X → M(n,C) is locally holomorphically Jordanizable and (3.1) holds,
then we have the following necessary conditions:

(1) The Jordan matrix J(x) is holomorphic on some open set U ⊆ X,
(2) there exist some holomorphic functions λ1, . . . , λm : U → C such that σ(A(x)) =

{λ1(x), . . . , λm(x)} for any x ∈ U ,
(3) for each k = 1, . . . , n, the functions U ∋ x 7→ ϑk(A(x)) are constant.

Proof. Condition (1) directly follows from (3.1). Condition (1) implies both (2) and (3). �

Notice that condition (2) implies that card σ(A(x)) 6 m for x ∈ U . In particular, the sign
< holds in case of coalescences of some of the eigenvalues λ1, . . . , λm.

Neither condition (1), nor conditions (2) and (3) together, are sufficient for the holomorphic
similarity of A.

Counterexample 3.9. Consider the unit disc D = {z ∈ C : |z| < 1} in C, and let A and J
be the holomorphic matrices given by

A(z) =



z 1 0
0 z2 z
0 0 z2


 , J(z) =



z 0 0
0 z2 1
0 0 z2


 , z ∈ D.

It is easy to see that A(z) is similar to J(z) for any z ∈ D. However, A(z) is not holomor-
phically similar to J(z). Assume there exists a holomorphic matrix S(z) = (sij(z))

3
i,j=1 such

that S(z)J(z) = A(z)S(z) for z ∈ D. We have

zs11 + s21 = zs11, z2s21 + zs31 = zs21,

z2s22 + zs32 = z2s22, z2s23 + zs33 = s22 + z2s23,

for z ∈ D. Hence, s21 = s31 = s32 = 0, and s22(0) = 0 · s33(0) = 0, so that S(0) is not
invertible.

Counterexample 3.10. Conditions (2) and (3) together do not imply condition (1) above.
Consider the disc D = {z ∈ C : |z| < 1

2
} in C, and the holomorphic map A : D → M(4,C)

defined by

A(z) =




z 1 0 0
0 −z 0 0
0 0 1 + z z
0 0 0 1 + z


 , z ∈ D.
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The eigenvalues ofA(z) are given by the holomorphic functions λ1(z) = z, λ2(z) = −z, λ3(z) =
1 + z. Furthermore, we have ϑ1(A(z)) = 2 and ϑ2(A(z)) = 1 for each z ∈ D. The matrix A,
however, does not admit a holomorphic Jordan form.

3.4. Coalescing points. Let X be a complex manifold, and A : X → M(n,C) be a holo-
morphic map.

Definition 3.11. A point xo ∈ X is called a coalescing point of the eigenvalues of A if for
any neighborhood U of xo there exists x ∈ U such that card σ(A(x)) > card σ(A(xo)). We
denote by coal(A) the set of coalescing points of eigenvalues of A.

For a proof of the following well-known result, see e.g. [Lei17].

Proposition 3.12. Let A : X → M(n,C) be a holomorphic map, xo ∈ X, σ(A(xo)) =
{λo,1, . . . , λo,m}, and let nj be the algebraic multiplicity (i.e. the order as a zero of the char-
acteristic polynomial of A(xo)) of λo,j for j = 1, . . . , m.

The following conditions are equivalent:

(1) xo /∈ coal(A(xo));
(2) there exists a neighborhood U of xo, and uniquely determined holomorphic functions

λ1, . . . , λm : U → C such that
• λj(xo) = λo,j for j = 1, . . . , m,
• σ(A(x)) = {λ1(x), . . . , λm(x)} for each x ∈ U ,
• the eigenvalue λj(x) of A(x) has algebraic multiplicity nj for each x ∈ U . �

Theorem 3.13. If the set coal(A) is non-empty, then it is a nowhere dense closed analytic
subset of X of codimension 1. �

Remark 3.14. There exist many sources in the literature for a proof of this result, e.g. see
[Bau74, Bau85][FG02, Ch. III, Th. 4.3 and 4.6]. In the recent preprint [Lei17, Th. 4.3],
J. Leiterer considered also general complex spaces X (i.e. by allowing singularities). Leit-
erer’s result provides finer estimates: if X is irreducible, and coal(A) 6= ∅, then there exist
finitely many holomoprhic functions h1, . . . , hℓ : X → C such that

coal(A) = {x ∈ X : hj(x) = 0, j = 1, . . . , ℓ}.

Each hj is a finite sum of products of the entries of A(x). Moreover, we have

|hj(x)| 6 (2n)6n
2

||A(x)||2n
2

, x ∈ X, 1 6 j 6 ℓ.

3.5. The gap topology. In what follows, we denote by ||f || the operator norm of any linear
map f : Cn → Cm, which is defined by ||f || := sup||x||=1 ||f(x)||. Here the spaces Cn,Cm are
intended to be equipped with the standard hermitian metric.

Denote by Gn the set of all C-vector subspaces of Cn. Given L1, L2 ∈ Gn, denote by
Π1,Π2 : Cn → Cn the orthogonal projections onto L1 and L2 respectively. We define the gap
distance between L1 and L2 as

Θ(L1, L2) := ||Π1 − Π2||.

Proposition 3.15 ([GLR06, Ch.XIII]). The gap distance Θ defines a metric on Gn. More-
over, we have

(1) Θ(L1, L2) 6 1 for each L1, L2 ∈ Gn,
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(2) Θ(L1, L2) < 1 only if dimL1 = dimL2. �

Denote by G(k, n) the Grassmannian of complex k-dimensional subspaces in Cn. The
space G(k, n) can be defined as the topological quotient U(n)/U(k)×U(n−k), with respect
to the inclusion U(k) × U(n− k) →֒ U(n). In particular, it follows that G(k, n) is compact
and connected.

Corollary 3.16. The connected components of the metric space (Gn,Θ) are homeomorphic
to the Grassmannians of complex subspaces in Cn, i.e. Gn

∼=
∐n

k=0G(k, n). In particular, the
metric space (Gn,Θ) is complete.

Proof. By the previous proposition, the function L 7→ dimL is locally constant on Gn,
and consequently constant on the connected components of Gn. Denote Gn,k the connected
component of Gn whose points are k-dimensional subspaces of Cn. We claim that the identity
map G(k, n) → Gn,k is continuous, for each k = 0, . . . , n. To see this, it is sufficient to show
the continuity of the map f : U(n) → Gn,k defined by

A 7→ C-span of the first k columns of A.

Let A1, A2 ∈ U(n), and denote by Ã1, Ã2 the n× k matrices obtained by the first k columns
of A1 and A2, respectively. Let Π1,Π2 ∈ End(Cn) be the orthogonal projections onto f(A1)
and f(A2), respectively. With respect to the standard basis of Cn, the matrices representing

Π1 and Π2 equal Ã1Ã
∗
1 and Ã2Ã

∗
2. We have

Θ(f(A1), f(A2)) = ||Π1 −Π2|| = ||Ã1Ã
∗
1 − Ã2Ã

∗
2|| = ||Ã1(Ã

∗
1 − Ã∗

2) + (Ã1 − Ã2)Ã
∗
2||

6 ||Ã1||||Ã
∗
1 − Ã∗

2||+ ||Ã1 − Ã2||||Ã
∗
2||

6 ||A1||||A
∗
1 − A∗

2||+ ||A1 −A2||||A
∗
2|| = 2||A1 − A2||.

This proves that the identity map G(k, n) → Gn,k is continuous. Moreover it is also closed,
since G(k, n) is compact and Gn is Hausdorff. �

3.6. Holomorphic families of subspaces. The topological space Gn can be made into a
complex manifold in a natural way, due to Corollary 3.16.

We call a holomorphic family of subspaces of Cn, parametrized by a complex manifold
X, any holomorphic map f : X → Gn. If X is connected, then f takes values in a complex
Grassmannian G(k, n) for some k = 0, . . . , n.

Remark 3.17. There is a 1-1 correspondence between the following data:

(1) a holomorphic family of subspaces f : X → G(k, n);
(2) a rank k holomorphic subbundle of the trivial bundle Cn := X × Cn;
(3) a continuous map f : X → Gn such that, for any xo ∈ X there exist a neighborhood

U of xo and holomorphic maps v1, . . . , vk : U → Cn such that v1(z), . . . , vk(z) are
linearly independent and f(z) = span〈v1(z), . . . , vk(z)〉 for each z ∈ U .

Proposition 3.18. Let X be a locally compact metric space, and T : X → M(n,C) a con-
tinuous map. The following conditions are equivalent:

(1) dimker T (x) is locally constant on X;
(2) dim ImT (x) is locally constant on X;
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(3) the map f : X → Gn, x 7→ ker T (x), is continuous;
(4) the map f : X → Gn, x 7→ ImT (x), is continuous.

If moreover X is a complex manifold and T is holomorphic, then the conditions above are
equivalent to the following ones:

(5) the map f : X → Gn, x 7→ ker T (x), is holomorphic;
(6) the map f : X → Gn, x 7→ ImT (x), is holomorphic.

Proof. The only non-trivial statements are (1) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (6). The
implications (1) ⇒ (3) and (2) ⇒ (4) can be easily proved by adapting the argument of
[GLR06, Prop. 13.6.1]. The implications (3) ⇒ (5) and (4) ⇒ (6) follow from a result of
Ph.G.A.Thijsse, [Thi78, Th. 3.1], proved in the more general case of families of complemented
subspaces of Banach spaces. See [Jan88, Prop. 5 and Appendix] for the complete argument,
and the reproduction of the proof of Thijsse’s result. See also the argument of [GLR06,
Prop. 18.1.2] for the case dimX = 1. �

Given a holomorphic map T : X →M(n,C), define n0 := minx∈X{dimker T (x)}. The set
Υ(T ) of jump points of T is the set

Υ(T ) := {x ∈ X : dim ker T (x) > n0}.

Proposition 3.19 ([Kab76, Satz 1.1]). The set Υ(T ) is an analytic subset of X. �

For x ∈ Υ(T ), the space ker T (x) is “too big” if compared to ker T (y) for y /∈ Υ(T ) near
x. We can however introduce a suitable replacement for the space ker T (x).

With any holomorphic map T : X → M(n,C), there is a naturally associated morphism
of OX-modules (for simplicity denoted by the same symbol)

T : O
⊕n
X → O

⊕n
X ,

where OX denote the structure sheaf of X. For any x ∈ X denote by ker Tx the stalk of
the kernel sheaf ker T . Define K[T ; x] to be the space of values at x of germs of Cn-valued

holomorphic functions in ker Tx, i.e.

K[T ; x] = {v ∈ ker T (x) | ∃fx ∈ ker Tx, fx(x) = v}

Theorem 3.20 ([Kab76, Kab12]).

(1) We have K[T ; x] ⊆ ker T (x) for any x ∈ X.
(2) We have K[T ; x] = ker T (x) for x /∈ Υ(T ).
(3) There exists an analytic subset Σ ⊆ X of codimension at least 2 such that f : X \Σ →

Gn, x 7→ K[T ; x], is a holomorphic family of subspaces. �

3.7. A generalization of a theorem of Thijsse and Wasow. As shown by Counterex-
amples 3.9 and 3.10, conditions (1), (2), (3) of Lemma 3.8 are not sufficient to infer the
existence of a holomorphic Jordan form. In this section, we find a further condition which,
jointly with condition (1), will ensure the locally holomoprhically Jordanizability of a matrix.

Theorem 3.21. Let X be a complex manifold, and A : X → M(n,C) be a holomorphic map.
The matrix A is locally holomorphically Jordanizable at a point xo ∈ X if and only if the
following conditions are satisfied:
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(1) there exists a neighborhood U of xo and a holomorphic map J : U → M(n,C) such
that J(x) is a Jordan form of A(x) for each x ∈ U ; in particular, there exist local
holomorphic functions λ1, . . . , λr : U → C such that σ(A(x)) = {λ1(x), . . . , λr(x)} for
each x ∈ U ;

(2) for each i = 1, . . . , r the limits of the generalized eigenspaces

lim
z→xo

z /∈coal(A)

ker (A(z)− λi(z)Id)
n

exist in the gap topology of Gn;
(3) we have

Cn =

r⊕

i=1

lim
z→xo

z /∈coal(A)

ker (A(z)− λi(z)Id)
n .

Moreover, conditions (2) and (3) are respectively equivalent to the following ones:

(2bis) the function x 7→ dimK[(A− λiId)
n; x] is continuous at xo, for any i = 1, . . . , r;

(3bis) we have Cn =
⊕r

i=1K[(A− λiId)
n; xo].

Remark 3.22. If the limit of point (2) exists it necessarily equals K[(A− λiId)
n; xo]. This

follows form Proposition 3.18 and Theorem 3.20. This implies the equivalences of (2) and
(2bis), and of (3) and (3bis). Moreover, notice that conditions (2), (2bis), (3), and (3bis) are
trivially satisfied if xo /∈ coal(A). This follows from Propositions 3.12 and 3.18.

Before proving the theorem, we consider a simpler case, namely that of a holomorphic
Jordan form with one eigenvalue only.

Lemma 3.23. Let T : X →M(n,C) be a holomorphic map. Assume that

(1) there exists a holomorphic map J : X →M(n,C) such that J(x) is a Jordan form of
A(x) for each x ∈ X,

(2) T has a unique holomorphic eigenvalue function λ : X → C.

Then T is holomorphically Jordanizable on any domain of X biholomorphic to a polydisc.

Proof. For any z ∈ X, set M(z) := T (z) − λ(z)Id, and Nj(z) := kerM(z)j for any j =
1, 2, 3, . . . . We have the tower of subspaces

N1(z) ⊆ N2(z) ⊆ N3(z) ⊆ · · · ⊆ Nn−1(z) ⊆ Nn(z) = Nn+1(z) = . . . .

First, we show that we have well-defined holomorphic maps Nj : X → Gn for any j.

For each j, let us introduce the analytic subsets Υj ⊆ X of jump points of M j . We claim
that Υj = ∅ for any j.

For j > n the statement is obvious. We have the following facts:
(i) since the matrix T has a single eigenvalue λ, we have

ϑk(T (z)) = ϑk(T (z), λ(z)), z ∈ X, k = 1, . . . , n;

(ii) since J(z) is holomorphic, the function z 7→ ϑk(T (z)) is constant on X for any k;
(iii) we have

ϑk(T (z), λ(z)) = dim
Nk(z)

Nk−1(z)
− dim

Nk+1(z)

Nk(z)
, k = 1, . . . , n, N0 := 0.
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From (i), (ii), (iii) for k = n, and the fact that Υn = ∅, we deduce that Υn−1 = ∅. Then,
by applying (i), (ii), (iii) for k = n − 1, we deduce that Υn−2 = ∅. By iteration of this
argument, one proves that all the sets Υj are empty. So Nj : X → Gn are holomorphic for
any j. In particular, by Remark 3.17, each Nj can be seen as a holomorphic subbundle of
Cn := X × Cn.

Let ∆ ⊆ X a domain biholomorphic to a polydisc. In particular, ∆ is a Stein manifold.
For any j > 1, there exists a holomorphic vector subbundle Vj → ∆ of Cn|∆ such that
Nj |∆ ⊕ Vj = Nj+1|∆. This follows from a general result of Shubin [Shu70, Th. 1]. Since
∆ is Stein, the topological and analytical classifications of vector bundles coincide, by the
Oka-Grauert principle. Consequently, all vector bundles Nj |∆ and Vj, with j > 1, are trivial.

Let nj be the dimension of the subspaces Nj(z) for any j > 1, and set ℓ := min{j : nj =
nj+1}. Since Vℓ−1 is trivial, there exist a global basis of sections, i.e. holomorphic maps
v1, . . . , vnℓ−nℓ−1

: ∆ → Cn such that

Nℓ(z) = Nℓ−1(z)⊕ span〈v1(z), . . . , vnℓ−nℓ−1
(z)〉, z ∈ X.

The tuple
v1(z), . . . , vnℓ−nℓ−1

(z), M(z)v1(z), . . . , M(z)vnℓ−nℓ−1
(z)

is easily seen to be linearly independent. Hence, by the triviality of Vℓ−2, there exist vector-
valued holomorphic functions

vnℓ−nℓ−1+1, . . . , vnℓ−1−nℓ−2
: X → Cn,

such that

Nℓ−1(z) = Nℓ−2 ⊕ span〈M(z)v1(z), . . . , M(z)vnℓ−nℓ−1
(z)〉

⊕ span〈vnℓ−nℓ−1+1(z), . . . , vnℓ−1−nℓ−2
(z)〉, z ∈ X.

Proceeding in this way, by applying the standard construction, a family of holomorphic
Jordan bases of Nℓ is obtained. �

Proof of Theorem 3.21. The necessity of condition (1) is clear. The limits

lim
z→xo

z /∈coal(A)

ker (J(z)− λi(z)Id)
n , i = 1, . . . , r,

satisfy conditions (2) and (3). Moreover, if S : U → GL(n,C) is such that J = S−1AS, we
have

lim
z→xo

z /∈coal(A)

ker (A(z)− λi(z)Id)
n = lim

z→xo

z /∈coal(A)

S(z) ker (J(z)− λi(z)Id)
n ,

and conditions (2) and (3) are satisfied as well.

Let us prove the sufficiency of conditions (1), (2), and (3). If condition (1) is satisfied,
there exist holomorphic families of subspaces Li : X \ coal(A) → Gn defined by Li(z) :=
ker (A(z)− λi(z)Id)

n for i = 1, . . . , r. By Proposition 3.18 and Kaballo’s Theorem 3.20,
these families can be prolonged to holomorphic families Li : X \ Σi → Gn, defined by

x 7→ K[(A− λiId)
n; x],

on the complement of analytic subspaces Σi ⊆ X of codimension > 2. By condition (2), we
necessarily have xo /∈

⋃r
i=1Σi.
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Hence, there exist

• a sufficiently small neighborhood U of xo on which the functions

ni(x) = dimK[(A− λiId)
n; x], i = 1, . . . , r,

are constant,
• holomorphic functions Wi : U → GL(ni,C), for i = 1, . . . , r, with Wi(xo) = Id,

such that

Li(z) = Wi(z)L
o
i , Lo

i ≡ K[(A− λiId)
n; xo], i = 1, . . . , r.

Moreover, by condition (3), up to shrinking U , we may assume that Cn = L1(z)⊕· · ·⊕Lr(z)
for all z ∈ U . Define W : U → GL(n,C) as the direct sum W = W1 ⊕ · · · ⊕Wr. We have

W−1(z)A(z)W (z) =

r⊕

i=1

Ãi(z), z ∈ U,

where each matrix Ãi(z) has a unique eigenvalue λi(z), for i = 1, . . . , r. Moreover, for any

i = 1, . . . , r, there exist holomorphic matrix-valued functions J̃i : U → M(n,C) which are

the Jordan forms of Ãi(z), by condition (1). The result follows by applying Lemma 3.23 to

each matrix Ãi, with i = 1, . . . , r.

This completes the proof. �

Corollary 3.24 ([Thi85, Main Theorem] [Was85, Th. 12.2-2]). Let X be a one dimensional
Stein manifold, and A : X → M(n,C) be a holomorphic map. The matrix A is globally
holomorphically Jordanizable if and only if the following conditions are satisfied:

(1) there exists a holomorphic map J : X →M(n,C) such that J(x) is a Jordan form of
A(x) for each x ∈ X; in particular, there exist holomorphic functions λ1, . . . , λr : X →
C such that σ(A(x)) = {λ1(x), . . . , λr(x)} for each x ∈ X;

(2) we have Cn =
⊕r

i=1K[(A− λiId)
n; x] for each x ∈ X.

Proof. The result follows from Corollary 3.7, and Theorem 3.21. Notice that conditions
(2) and (2bis) of Theorem 3.21 are trivially satisfied in the one dimensional case, due to
Kaballo’s Theorem 3.20. �

Example 3.25. Consider the holomorphic map A : C2 → M(3,C) defined by A(x) =

x1 0 x2
0 x1 x2
0 0 0


. There exists holomorphic eigenvalues functions λ1(x) = x1 and λ2(x) = 0.

We have coal(A) = {x1 = 0}, and the only points at which A(x) is not diagonalizable are
coal(A) \ {(0, 0)}. The only point xo at which one of the limits of condition (2) of Theorem
3.21 does not exist is xo = (0, 0). For x /∈ coal(A), we have

ker (A(x)− λ2(x)Id)
3 = K[(A− λ2Id)

3 ;x] = span
〈
(−x2,−x2, x1)

T
〉
,
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whose limit x → (0, 0) does not exist. Notice that at points x in coal(A) \ {(0, 0)} condition
(2) is satisfied, but not condition (3). We have indeed

K[(A− λ1Id)
3 ;x] = span

〈
(1, 0, 0)T , (0, 1, 0)T

〉

⊇ K[(A− λ2Id)
3 ;x] = span

〈
(−x2,−x2, 0)

T
〉
.

3.8. Holomorphic Jordanization and bundles of matrices. Given two multisets X1 =
(X1, m1) and X2 = (X2, m2), we define their multiunion X1∨X2 as the multiset (X1∪X2, m),
where the multiplicity function m : X1 ∪X2 → N∗ is defined as follows

m(x):=





m1(x), if x ∈ X1 \X2,

m2(x), if x ∈ X2 \X1,

m1(x) +m2(x), if x ∈ X1 ∩X2.

We have a natural “forgetful” surjection ξ : P(2, n) → P(n), defined by

{{λ1, . . . , λr}} 7→ λ1 ∨ · · · ∨ λr.

For each λ ∈ P(n), define

Fλ :=
∐

ν∈ξ−1(λ)

Mν .

Theorem 3.26. Let X be a connected complex manifold, and A : X → M(n,C) be a
holomorphic map, locally holomorphically Jordanizable at each point of X. Then we have
A(X) ⊆ Fλ for some λ ∈ P(n).

Proof. For any k = 1, . . . , n, the map x 7→ ϑk(A(x)) is constant on X, by connectedness of
X and Lemma 3.8. Assume x1, x2 ∈ X to be such that A(x1) ∈ Mλ1 and A(x1) ∈ Mλ2 .
We have ϑk(A(x1)) = ϑk(A(x2)) for any k = 1, . . . , n. This means that the multiplicities of
k as an element of both ξ(λ1), and ξ(λ2) resp., are all equal for any k = 1, . . . , n. Hence
ξ(λ1) = ξ(λ2). �

Although the inverse statement is not true (as shown, e.g., by Counterexample 3.9), we
have the following result.

Theorem 3.27. Assume A : X → M(n,C) is holomorphic with A(X) ⊆ Mλ for some
λ ∈ P(2, n). Then A is locally holomorphically Jordanizable at each point of X.

Proof. Since A(X) ⊆ Mλ, we have coal(A) = ∅. Hence conditions (2) and (3) of Theorem
3.21 are trivially satisfied. Also condition (1) holds true, by Proposition 3.12. �

4. Universality of integrable deformations of solutions of RHB problems

4.1. Riemann–Hilbert–Birkhoff problems. Consider a disc D in P1, centered at z = ∞.
Given a holomorphic vector bundle Eo on D, equipped with a meromorphic connection ∇o

admitting a pole at z = ∞, the Riemann–Hilbert–Birkhoff (RHB) problem is the following:

Problem 4.1. Does there exist a trivial vector bundle Eo on P1 equipped with a meromor-
phic connection ∇o, restricting to the given data on D, and with a further logarithmic pole
only at z = 0?
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Assume that the pole at z = ∞ is of order 2: in a basis of sections on D, the meromorphic
connection has matrix of connection 1-forms Ω = −A(z)dz, where the n × n matrix A(z)
equals

A(z) =
∞∑

k=0

Akz
−k, A0 6= 0.

Denote by C{z−1} the ring of convergent power series in z−1. The RHB Problem 4.1 is then
equivalent to find a so-called Birkhoff normal form: does it exist a matrix G ∈ GL(n,C{z−1})
such that B(z) = G−1AG−G−1 d

dz
G is of the form

B(z) = B0 +
B1

z
, B0, B1 ∈M(n,C)?

Remark 4.2. The RHB Problem 4.1 is not always solvable. G.Birkhoff himself proved
that the problem is solvable provided that the monodromy matrix of the differential system
d
dz
Y (z) = A(z)Y is diagonalizable [Bir13], but he seemed to believe that the same would

hold generally. This was disproved in 1959 by F.R.Gantmacher and P.Masani: they in-
dependently exhibited connections Ω which cannot be put in Birkhoff normal form. See
[Gan59] and [Mas59]. The counterexamples found by Gantmacher and Masani are of re-
ducible nature, in the sense that they can be put in lower triangularly blocked form via an
analytic transformation. This led to the following restricted problem: is the RHB Problem
4.1 solvable in the irreducible case? This question was answered positively, first for rank
n = 2 by W.B. Jurkat, D.A. Lutz, and A.Peyerimhoff [JLP76], then for n = 3 by W.Balser
[Bal90], and finally for any dimension by A.A.Bolibruch [Bol94a, Bol94b]. We also refer to
[Sab07, Ch.IV], where the reader can find further irreducibility assumptions (named after
J. Plemelj, A.A.Bolibruch, and V.Kostov) ensuring the solvability of the RHB Problem 4.1.
For the reducible case, the reader can find in [BB97] sufficient conditions for the solvability
of the problem.

Remark 4.3. The RHB Problem 4.1 admits several variants.

(1) If one allows B(z) to have a more general form

B(z) = B−Nz
N + · · ·+B−1z +B0 +

B1

z
, N > 1, Bj ∈M(n,C),

then the problem always admits a positive solution. This was the original result
proved by G.Birkhoff in [Bir09], see also [Sib90, §3.3].

(2) If one allows meromorphic equivalences, i.e. gauge transformations B(z) = G−1AG−
G−1 d

dz
G with G ∈ GL(n,C{z−1}[z]), then the problem is known to be solvable in

several cases. For example, if n = 2, 3, then the problem is always solvable as proved
by W.B. Jurkat, D.A. Lutz, and A.Peyerimhoff [JLP76], and W.Balser [Bal89]. For
arbitrary ranks n, but under the assumption that A0 has pairwise distinct eigenvalues,
H.Turrittin showed that the problem always admits a positive solution [Tur63] [Sib90,
§3.10].

4.2. Families of Riemann–Hilbert–Birkhoff problems. Throughout the remaining part
of the paper, X will denote a connected complex manifold of dimension d. If Z ⊆ X is a
smooth analytic hypersurface, we denote by OX(∗Z) the sheaf of meromorphic functions on
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X with poles on Z at most. If E is a holomorphic vector bundle on X, with sheaf of sections
E , we set E (∗Z) := E ⊗OX

OX(∗Z).

In what follows, we want to consider families of RHB problems, parametrized by points
of X.

Definition 4.4. Let (Eo,∇o) be a holomorphic vector bundle on a disc D ⊆ P1, centered
at z = ∞, equipped with a meromorphic connection with a pole of order 2 at z = ∞. An
integrable deformation (∇, E,X, xo) of (Eo,∇o) parametrized by X is the datum of

• a vector bundle E on D ×X,
• a flat connection ∇ on E with a pole of order 2 along {∞} ×X,
• a point xo ∈ X at which (E,∇) restricts to (Eo,∇o).

The integrable deformation is called versal if any other deformation with base space X ′ is
induced by the previous one via pull-back by a holomorphic map ϕ : (X ′, x′o) → (X, xo). It
is universal if the germ at x′o of the base-change ϕ is uniquely determined.

Assume (Eo,∇o) to be extendable to a solution of the RHB Problem 4.1: this means that
(in a suitable basis of sections) the matrix of connections 1-forms of ∇o takes the form

Ωo = −

(
Ao +

Bo

z

)
dz. (4.1)

Let (∇, E,X, xo) be an integrable deformation of (Eo,∇o). The next result shows that, for
generic x ∈ X, the restriction (E,∇)|D×x is extendable to a solution of the RHB Problem
4.1, provided that X is simply connected.

Theorem 4.5 ([Sab07, Th.VI.2.1][DH21, Th. 5.1(c)]). Under the assumptions above, if X
is simply connected, then there exists

• an analytic hypersurface Θ ⊆ X \ {xo},
• a unique basis of sections of E (∗(D ×Θ)),

with respect to which the the matrix of connection 1-forms of ∇ takes the form

Ω = −

(
A(x) +

Bo

z

)
dz − z C(x), x ∈ X \Θ, (4.2)

where

• the matrix A(x) is a matrix of holomorphic functions on X \ Θ, and meromorphic
along Θ, such that A(xo) = Ao,

• the matrix C(x) is a matrix of holomorphic 1-forms on X \ Θ, and meromorphic
along Θ, such that C(xo) = 0. �

Definition 4.6. The matrix-valued holomorphic function A : X \Θ →M(n,C) above is the
pole part of the integrable deformation ∇.

The matrix-valued 1-form C : X \ Θ → M(n,C) ⊗ Ω1
X above is the deformation part of

the integrable deformation ∇.

The integrability condition for ∇ translates into the system of equations

dC = 0, C ∧ C = 0, [A,C] = 0, dA = C + [C,Bo]. (4.3)
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If x = (x1, . . . , xd) are local holomorphic coordinates on X, and if C =
∑d

i=1Ci(x)dx
i, these

equations take the form

∂Ci

∂xj
=
∂Cj

∂xi
, [Ci, Cj] = 0, [A,Ci] = 0,

∂A

∂xi
= Ci + [Ci, Bo], (4.4)

for i, j = 1, . . . , d.

4.3. Universal integrable deformations: Malgrange’s and Jimbo–Miwa–Ueno’s
theorems. Let (Eo,∇o) be a solution of a RHB problem 4.1, i.e. a trivial vector bundle (of
rank n) on P1 with meromorphic connection with matrix (in a suitable basis of sections) of
the form

Ωo = −

(
Ao +

Bo

z

)
dz. (4.5)

Question 1: Under which conditions on (Ao, Bo) there exists a universal integrable defor-
mation of the connection (4.5)?

A first positive result, due to B.Malgrange, requires that the pole part Ao is an element
of the regular stratum Mreg of Section 2.6.

Theorem 4.7 ([Mal83a, Mal86]). Assume that the matrix Ao is regular. The connection ∇o

with matrix (4.5) has a germ of universal deformation.

The reader can find the proof in Appendix A.1.

This result can be made more explicit, under the further semisimplicity assumption on
Ao. Assume that Ao ∈ Mreg ∩Mdiag = M{{1;1;...;1}}, and let P ∈ GL(n,C) such that

P−1AoP = Λo = diag(u1o, . . . , u
n
o ), uio 6= ujo, for i 6= j.

Set

Ω̂o := P−1ΩoP = −

(
Λo +

Bo

z

)
dz, Bo := P−1BoP. (4.6)

For u ∈ Cn, denote Λ(u) := diag(u1, . . . , un), so that Λ(uo) = Λo. Given a matrix M
denote by M ′ its diagonal part, and by M ′′ its off-diagonal part.

Theorem 4.8 ([Mal83b, Mal86]). Under the assumptions above, there exists a sufficiently
small polydisc D = D(uo) ⊆ Cn with center at uo, and a holomorphic off-diagonal matrix
Γ: D →M(n,C), Γ(u) = Γ′′(u), such that:

(1) the matrix of 1-forms Ω̂ on C∗ × D, defined by

Ω̂(z,u) := −d (zΛ(u))− ([Γ(u),Λ(u)] + B′
o)

dz

z
− [Γ(u), dΛ(u)], (4.7)

defines an integrable connection ∇ on the trivial bundle Cn → C∗ × D;

(2) the dz-component of Ω̂ restricts to Ω̂o at uo, i.e.

Ω̂(z,uo) = Ω̂o + ω, ω ∈M(n,Ω1
D); (4.8)
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(3) ∇ is formally equivalent at z = ∞ to the matrix connection

− d (zΛ(u))− B′
o

dz

z
, (4.9)

that is there exists a z−1-formal base change Φ(z,u) =
∑∞

k=0Φk(u)z
−k, with Φk : D →

M(n,C) holomorphic and Φ0(D) ⊆ GL(n,C), such that

Φ−1Ω̂Φ + Φ−1dΦ = −d (zΛ(u))− B′
o

dz

z
;

(4) ∇ defines a universal integrable deformation of its restriction at any point u ∈ D.

Moreover, the matrix Γ is uniquely determined by these conditions. �

Remark 4.9. The integrability condition of ∇ is equivalent to the following equations

d[Γ, dΛ] = [Γ, dΛ] ∧ [Γ, dΛ], d[Γ,Λ] = [[Γ, dΛ],B′
o + [Γ,Λ]] ,

called Darboux–Egoroff equations. In local coordinates u, they read

∂kΓij = ΓikΓkj, k 6= i, j, (4.10)

(uj − ui)∂iΓij =
∑

k 6=i,j

(uk − uj)ΓikΓkj − (bj − bi − 1)Γij, (4.11)

(ui − uj)∂jΓij =
∑

k 6=i,j

(uk − ui)ΓikΓkj − (bj − bi − 1)Γij, (4.12)

where Γ = (Γij)
n
i,j=1, and B′

o = diag(b1, . . . , bn).

The statement of Theorem 4.8 ca be further refined to a global one. Let ∆ be the union
of big diagonal hyperplanes in Cn, defined by the equations

∆ :=
⋃

i<j

{u ∈ Cn : ui = uj},

letXn be the complement Cn\∆, with base point uo := (u1o, . . . , u
n
o ). Denote by π : (X̃n, ũo) →

(Xn,uo) the universal cover of Xn, equipped with fixed base points ũo and uo, respectively.
The space Xn is identified with the space of diagonal regular n× n matrices.

Theorem 4.10 ([JMU81, Mal83b]). There exists on P1 × X̃n a vector bundle E, equipped
with a meromorphic connection ∇, such that

(1) the coefficients of ∇ have poles along the hypersurface Θ ⊆ X̃n of points ũ ∈ X̃n such
that E|P1×{ũ} is not trivial;

(2) ∇ is flat, with a pole of Poincaré rank 1 along {∞} × X̃n, and a logarithmic pole

along {0} × X̃n;
(3) (E,∇) restricts to (Eo,∇o) at ũo;

(4) for any ũ ∈ X̃n, the eigenvalues of the pole part of ∇ at the point (∞, ũ) equal (up
to permutation) the n-tuple π(ũ).

Moreover, for any ũ ∈ X̃n \ Θ, the bundle with meromorphic connection (E,∇) induces a
universal deformation of its restriction (E,∇)|P1×{ũ}. �
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4.4. Integrable deformations of degenerate Birkhoff normal forms: Sabbah’s the-
orem. Malgrange’s and Jimbo–Miwa–Ueno’s Theorems 4.7, 4.8, 4.10 provide an answer to
Question 1, in the case the pole part Ao ∈ Mreg. In a sense, these results are the best possi-
ble: if Ao /∈ Mreg, then in general the connection (4.5) does not admit versal deformations,
see the example in Appendix A.2.

Consider now the stratum Mdiag of diagonalizable matrices, that is the conjugate stratum
of Mreg in the sense of Section 2.6.

Let us assume that Ao ∈ Mdiag: that is, in the notations of the previous section, assume
uo ∈ ∆. Define the partition {1, . . . , n} =

∐
r∈R Ir such that for any r ∈ R we have

{i, j} ⊆ Ir if and only if uio = ujo.

In [Sab21], C. Sabbah addressed the following problem.

Question 2: Is it possible to find an integrable deformation of the form (4.7) of the Birkhoff
normal form (4.6) with z−1-formal normal form (4.9)?

Remarkably, in [Sab21, Section 4] it is shown that the answer is positive, under (sharp)
sufficient conditions on the coefficient Bo of the normal form (4.6).

Property PNR9: There exists a matrix P ∈ GL(n,C) diagonalizing Ao, i.e. P−1AoP =
Λo = diag(u1o, . . . , u

n
o ), and such that the matrix Bo := P−1BoP has the following properties:

(⋆) B′′
o ∈ Im ad(Λ(uo)).

(⋆⋆) B′
o is partially non-resonant, i.e.

∀ r ∈ R, ∀ i, j ∈ Ir, (B′
o)ii − (B′

o)jj /∈ Z \ {0}.

Theorem 4.11 ([Sab21, Th. 4.9]). Assume that Property PNR above holds true. Let uo ∈ ∆,
and V a neighborhood of uo in Cn. If V is sufficiently small, there exists a holomorphic
hypersurface Θ in V \{uo} and a holomorphic off-diagonal matrix Γ′′(u) on V \Θ, such that

(1) the 1-forms matrix (4.7) defines a meromorphic connection ∇ on the trivial vector
bundle on P1 × (V \Θ);

(2) ∇ restricts to the connection (4.6) at uo;
(3) ∇ is formally equivalent at z = ∞ to the connection defined by the matrix of 1-forms

(4.9).

The matrix Γ is uniquely determined by these conditions. �

Remark 4.12. Property PNR-(⋆) is equivalent to (Bo)ij = 0 whenever i, j ∈ Ir for some
r. It is a necessary condition for the statement of Theorem 4.11: by restriction of (4.7) at
u = uo, we obtain B′′

o = [Γ(uo),Λo].

4.5. Integrable deformations of d/dv/fs -type. Let ∇o be a connection on a trivial vector
bundle Eo → P1with matrix of connection 1-forms (4.5). Consider an integrable deformation
(∇, E,X, xo) of ∇o, parametrized by a complex manifold X, with matrix of connection 1-
forms Ω as in equation (4.2). In particular let

A : X \Θ →M(n,C), C : X \Θ →M(n,C)⊗ Ω1
X ,

be the pole and deformation parts, respectively.

9PNR stands for “partial non-resonance”.



31

Definition 4.13. The deformation (∇, E,X, xo) is said to be

• of diagonal type (for short, d-type) if the pole part A and the deformation part C of
Ω are locally holomorphically diagonalizable matrices at xo;

• of generic diagonal type (for short, generic d-type) if it is of d-type, and if f1, . . . , fn
are the holomorphic eigenvalues of A, then we have dxo

fi 6= dxo
fj, for any i 6= j.

A germ of integrable deformation will be said of (generic) d-type if at least one (and hence
any) of its representative is of (generic) d-type. We denote by Id(∇

o) (resp. I
gen
d (∇o)) the

classes of germs of integrable deformations of ∇o which are of d-type (resp. generic d-type).

Remark 4.14. The genericity condition implies that no 1-form d(fi − fj) is vanishing in a
neighborhood of xo. In particular, no pair of eigenvalues fi and fj, with i 6= j, are identically
equal.

Remark 4.15. If (∇, E,X, xo) is a (germ of) integrable deformation of (generic) d-type, we
can construct a new (germ of) integrable deformation (∇′, E ′, X ×C, (xo, 0)) as follows. Set
E ′ := pr∗E, where pr : X × C → X. If Ω(z, x) is the matrix of ∇ as in (4.2), define ∇′ by
the matrix of connection 1-forms

Ω′(z, x, s) = Ω(z, x) + d(zs · Idn), (x, s) ∈ X × C, n = rk(E).

We have ∇ = ι∗∇′, where ι : X → X × C is the canonical embedding ι(x) = (x, 0).

Theorem 4.16. Let (∇, E,X, xo) be an integrable deformation of ∇o of d-type. Let U ⊆
X \Θ a neighborhood of xo such that A|U , C|U are holomorphically diagonalizable.

(1) If ∆0 : U → M(n,C), with ∆′′
0 = 0, is the holomorphic diagonal form of A|U , then

d∆0 ∈ Ω1
U ⊗M(n,C) is the diagonal form of C|U .

(2) There exists a base of holomorphic sections of E|P1×U with respect to which ∇ has

the following matrix Ω̃ of connection 1-forms

Ω̃(z, x) = −

(
∆0(x) +

1

z
B(x)

)
dz − z d∆0(x) +̟(x), (4.13)

where B : U →M(n,C) is holomorphic, and ̟ ∈ Ω1
U ⊗M(n,C).

Remark 4.17. The integrability conditions for ∇, in terms of (∆0,B, ̟) as in (4.13), read

[d∆0,B] + [∆0, ̟] = 0, dB = [B, ̟], d∆0 ∧̟+̟ ∧ d∆0 = 0, d̟+̟ ∧̟ = 0.

Moreover, notice that B is holomorphically similar to the constant matrix Bo, and hence
holomorphically Jordanizable.

Proof. Consider the matrix Ω(z, x) = −
(
A(x) + 1

z
Bo

)
dz − zC(x) defining ∇. The matrices

A and C are, by assumption, locally holomorphically diagonalizable at xo. Moreover we
have [A,C] = 0, by integrability of ∇. Consequently, there exists a holomorphic map
G : U → GL(n,C) which simultaneously diagonalizes A(x) and C(x), i.e.

G(x)−1A(x)G(x) = ∆0(x), G(x)−1C(x)G(x) = ∆1(x).

Set B := G−1BoG, and ̟ = G−1dG. We have

G−1ΩG +G−1dG = −

(
∆0(x) +

1

z
B

)
dz − z∆1(x) +̟,



32 GIORDANO COTTI

and the integrability conditions read

d∆0 = ∆1 + [∆1,B] + [∆0, ̟], dB = [B, ̟], [∆0,∆1] = 0,

d∆1 +∆1 ∧̟ +̟ ∧∆1 = 0, ∆1 ∧∆1 = 0, d̟ +̟ ∧̟ = 0.

From the first equation we deduce ∆1 = d∆0. �

Definition 4.18. Let (∇, E,X, xo) be an integrable deformation of d-type. We say that
(∇, E,X, xo) is of diagonal-vanishing type (for short, dv-type) if there exist

• a neighborhood U ⊆ X \Θ of xo,
• a holomorphic off-diagonal matrix L : U →M(n,C), L′′ = L,
• a basis of holomorphic sections of E|P1×U ,

with respect to which ∇ has matrix of connection 1-forms as in (4.13) with

B′′ = [L,∆0], ̟′′ = [d∆0,L]. (4.14)

We say that a germ of integrable deformation is of dv-type if at least one (and hence any)
of its representative is of dv-type. We denote by Idv(∇

o) the class of germs of dv-type
integrable deformations of ∇o.

Theorem 4.19. Let (∇, E,X, xo) be an integrable deformation of ∇o of dv-type. There exist
a neighborhood U of xo, and a basis of sections of E|P1×U with respect to which ∇ has the
following matrix of connection 1-forms

Ω̂(z, x) = −

(
∆0(x) +

1

z
B(x)

)
dz − z d∆0(x) + ω(x), (4.15)

where
B

′ = B
′
o = const., B

′′ = [L,∆0], ω′ = 0, ω′′ = [d∆0, L], (4.16)

for some holomorphic off-diagonal matrix L : U →M(n,C).

Proof. Let U be as in Theorem 4.16. Consider a matrix Ω̃ defining ∇ as in (4.13). By
splitting ̟ = ̟′ +̟′′, we have

d̟′ = (̟′′ ∧̟′′)′ = ([d∆0,L] ∧ [d∆0,L])
′ = 0.

Since ̟′ is closed, locally there exists an invertible diagonal matrix H : U → GL(n,C) such

that ̟′ = −H−1dH . The matrix Ω̂ = H−1Ω̃H +H−1dH is as in (4.15), with

B = H−1BH, ω = H−1̟H +H−1dH.

The last three equations of (4.16) are automatically satisfied, with L = H−1LH . The first
equation follows from the integrability condition dB = [B, ω]: we have

dB′ = [B′′, ω′′]′ = [[L,∆0], [d∆0, L]]
′ = 0. �

Remark 4.20. In terms of the matrices (∆0,B
′
o, L), the integrability condition of the con-

nection (4.15) reads

d[L, d∆0] = [L, d∆0] ∧ [L, d∆0], (4.17)

d[L,∆0] = [[L, d∆0],B
′
o + [L,∆0]] . (4.18)

We call these equations the generalized Darboux–Egoroff equations.
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In general, the class of dv-type integrable deformations is strictly contained in the class of
d-type ones, as the following example shows.

Example 4.21. Let f : C → C an arbitrary holomorphic function, and d1, d2 ∈ C. Introduce
the matrix-valued functions ∆0,B : C → M(2,C) and the 1-form valued matrix ω : C →
M(2,C)⊗ Ω1

C defined by

∆0(x) :=

(
f(x) 0
0 f(x)

)
, B(x) =

(
d1 (d1 − d2)x
0 d2

)
, ω =

(
0 1
0 0

)
dx.

The 1-forms valued matrix Ω̃(z, x) := −
(
∆0(x) +

1
z
B(x)

)
dz − z d∆0(x) + ω defines an

integrable deformation of its restriction at any xo ∈ C. Such a deformation is of d-type,
but not of dv-type. Assume, indeed, that there exists a gauge equivalence T (z, x) such that

T−1Ω̃T + T−1dT is as in (4.15). In particular, the 1-form ω̂ := T−1ωT + T−1∂xT dx should
satisfy

ω̂ = ω̂′ + ω̂′′ = [d∆0, L] = 0.

Hence, we have ωT + ∂Tx dx = 0. If we set

T =

(
T11 T12
T21 T22

)
,

we necessarily have

∂xT11 + T21 = 0, ∂xT12 + T22 = 0, ∂xT21 = 0, ∂xT22 = 0.

This implies that

T (z, x) =

(
−xT21(z) −xT22(z)
T21(z) T22(z)

)
=⇒ det T ≡ 0.

This is absurd.

Definition 4.22. Let (∇, E,X, xo) be an integrable deformation of ∇o with matrix Ω as in
(4.2). We say that (∇, E,X, xo) is of formally simplifiable type (for short, fs -type) if there
exist

• a neighborhood U ⊆ X \Θ of xo,
• a sequence of holomorphic maps Φk : U → M(n,C), with k > 0 and Φ0(U) ⊆
GL(n,C),

• a holomorphic diagonal map ∆0 : U →M(n,C),
• a constant diagonal matrix B′

o ∈M(n,C),

such that

Φ−1ΩΦ + Φ−1dΦ = −d (z∆0(x))−B
′
o

dz

z
.

We say that a germ of integrable deformation is of fs -type if at least one (and hence any) of
its representative is of fs -type. We denote by Ifs(∇

o) the class of germs of fs -type integrable
deformations of ∇o.
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Remark 4.23. The functions Φk in the definition of integrable deformation of fs -type satisfy
the following equations:

AΦ0 = Φ0∆0, CΦ0 = Φ0d∆0,

AΦk+1 +BoΦk + kΦk = Φk+1∆0 + ΦkB
′
o, k > 0,

dΦk = CΦk+1 − Φk+1d∆0, k > 0.

Denote by I(∇o) the set of all germs of integrable deformations of a connection ∇o.

Theorem 4.24.

(1) The classes Id(∇
o), Idv(∇

o), and Ifs(∇
o) are closed by arbitrary base change of the

deformation parameter spaces ϕ : (X, xo) → (X ′, x′o).
(2) For any connection ∇o of the form (4.5), we have

Ifs(∇
o)⊆

Idv(∇
o) ⊆ Id(∇

o) ⊆ I(∇o)

I
gen
d (∇o) ⊆

(3) If the pole part Ao of ∇o is in Mreg ∩Mdiag, then we have

Ifs(∇
o) = Idv(∇

o) = Id(∇
o) = I(∇o).

Proof. Point (1) is obvious, by definition of the classes Id(∇
o), Idv(∇

o), and Ifs(∇
o).

The only nontrivial inclusion of point (2) is (Ifs(∇
o) ∪ I

gen
d (∇o)) ⊆ Idv(∇

o). Let ∇ ∈
Ifs(∇

o) be defined by the matrix Ω as in (4.2). Let (Φk)k>0 be the matrix-valued functions
such that Φ :=

∑
k>0Φkz

−k satisfies Φ−1ΩΦ + Φ−1dΦ = −d (z∆0(x)) −B
′
o
dz
z

. By invoking
the equations of Remark 4.23, it is easy to see that

Φ−1
0 ΩΦ0 + Φ−1

0 dΦ0 = −

(
∆0 +

1

z
(B′

o + [Φ−1
0 Φ1,∆0])

)
dz − zd∆0 − [Φ−1

0 Φ1, d∆0].

This proves that Ifs(∇
o) ⊆ Idv(∇

o).

Let ∇ ∈ I
gen
d (∇o). By Theorem 4.16, it can be defined by a matrix Ω̃ of connection

1-forms as in (4.13) for a suitable pair (B, ̟) of matrices. By integrability, we have d∆0 ∧
̟ +̟ ∧ d∆0 = 0. The equation for the (i, j) entry, with i 6= j, reads ̟ij ∧ (dfi − dfj) = 0.
Assume temporarily that the deformation is parametrized by a complex manifold X with
dimCX > 2. Since dfi − dfj 6≡ 0 in a neighborhood U of xo, we deduce the existence10 of
a holomorphic function Lij : U → C such that ̟ij = Lij(dfi − dfj). This is a special case
of de Rham’s division lemma, see [dR54][NY04, Lemma 3.1]. By integrability, we also have
[d∆0,B]+[∆0, ̟] = 0. The equation for the (i, j) entry reads (dfi−dfj)Bij+(fi−fj)̟ij = 0.
Hence, we necessarily have Bij + (fi − fj)Lij = 0. This shows that, if dimCX > 2, ∇ is
of dv-type, since B′′ = [L,∆0] and ̟ = [d∆0,L]. If dimCX = 1, by Remark 4.15, we
can consider an extended integrable deformation ∇′ parametrized by X × C and such that
∇ = ι∗∇′, where ι : X → X × C, ι(x) := (x, 0). The connection ∇′ is of generic d-type, so
that ∇′ ∈ Idv(∇

o). The result for ∇ follows from point (1). This proves point (2).

10If dimC X = 1, the vanishing condition ̟ij ∧ (dfi − dfj) = 0 does not imply that ̟ij is a multiple of
(dfi − dfj). The vanishing condition is indeed satisfied by any arbitrary holomorphic 1-form ̟ij .
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Let us prove point (3). Consider an arbitrary integrable deformation defined by a matrix
Ω as in (4.2). The set Mreg ∩ Mdiag is an open dense subset of M(n,C). Hence, if Ao ∈
Mreg ∩Mdiag, there exists a neighborhood U ⊆ X of xo such that A(x) ∈ Mreg ∩Mdiag for
any x ∈ U . Consequently, A(x) is locally holomorphically diagonalizable by Theorem 3.27.
By integrability, the matrices A(x) and C(x) commute for any x ∈ U . By regularity of A(x),
it follows that C(x) is a polynomial expression of A(x). Thus, C(x) is locally holomorphically
diagonalizable. This shows that I(∇o) = Id(∇

o).

Consider an integrable deformation ∇ of d-type, defined by a matrix Ω̃ as in (4.13) for
a suitable pair (B, ̟). By integrability, we have [d∆0,B] + [∆0, ̟] = 0. The equation for
the (i, j) entry, with i 6= j, reads (dfi − dfj)Bij + (fi − fj)̟ij = 0. By the argument above,

we also have fi(x) 6= fj(x) for any i 6= j and any x ∈ U . Hence, if we set Lij :=
Bij

fj−fi
,

we obatin a holomorphic off-diagonal matrix L : U → M(n,C) such that B = [L,∆0] and
̟ = [d∆0,L]. This shows that Id(∇

o) = Idv(∇
o).

It thus remains to show that Idv(∇
o) ⊆ Ifs(∇

o). Let ∇ ∈ Idv(∇
o) to be defined by the

matrix Ω̂ as in (4.15). As before, we can take U sufficiently small so that fi(x) 6= fj(x) for
any i 6= j and any x ∈ U . We claim that there exists a unique sequence of holomorphic
functions Fk : U →M(n,C), with k > 1, such that

F−1Ω̂F + F−1dF = −d (z∆0(x))−B
′
o

dz

z
,

where

F (z, x) := Idn +

∞∑

k=1

Fk(x)z
−k, B

′
o = B(xo)

′.

This holds if and only if the following identities are satisfied

[∆0, Fk+1] +BFk − FkB
′
o + kFk = 0, k > 0, F0 = Idn, (4.19)

dFk = [F1, d∆0]Fk + [d∆0, Fk+1], k > 0. (4.20)

The functions Fk’s can be found by iteratively solving equations (4.19). For i 6= j, we find

(Fk+1)ij =
1

fj − fi
(BFk − FkB

′
o + kFk)ij , k > 0

and the diagonal elements are given by

(Fk+1)ii = −
1

k + 1

∑

ℓ 6=i

Biℓ(Fk+1)ℓi, k > 0.

The resulting functions Fk’s are holomorphic on U . In particular, notice that F ′′
1 = L. Let

us prove that equations (4.20) are automatically satisfied. The proof is standard, but for
completeness we outline it below. Fix the sector V in the universal cover of C∗ defined

by V = {z ∈ C̃∗ : | arg z| < π
2
}. By a theorem of Y. Sibuya [Sib62, Main Th.] [HS66]

[Was65, BJL79], the differential system of equations

d

dz
Y =

(
∆0(x) +

1

z
B(x)

)
Y (4.21)
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admits a unique fundamental system of solutions Y (z, x) such that

Y (z, x)z−B′

oe−∆0(x) ∼ F (z, x), |z| → ∞, z ∈ V, uniformly in x. (4.22)

If we prove that Y satisfies the system of equations

d′Y = (z d′∆0(x) + [F1, d
′∆0]) Y, d′ :=

d∑

i=1

∂

∂xi
dxi, xi’s coordinates on X, (4.23)

then equations (4.20) immediately follow from the asymptotic expansion (4.22). For any
i = 1, . . . , d, set

Wi(z, x) := ∂iY (z, x)− (z∂i∆0(x) + [F1, ∂i∆0]) Y (z, x).

We claim that each function Wi is a solution of (4.21): by a simple computation, and by
invoking the first two identities of Remark 4.17, we find that

∂zWi −

(
∆0 +

1

z
B

)
Wi = ∂i

(
∂zY −

(
∆0 +

1

z
B

)
Y

)
= 0.

Hence, for any x ∈ X, there exists a matrix Ci(x) such that Wi(z, x) = Y (z, x)Ci(x). On
the one hand, we have

Wi(z, x) ∼ (∂iF + z[F, ∂i∆0] + [F1, ∂i∆0]F ) z
B′

oez∆0, |z| → ∞, z ∈ V, uniformly in x.

On the other hand, we also have

Wi(z, x) ∼ F (z, x)zB
′

oez∆0Ci(x), |z| → ∞, z ∈ V, uniformly in x.

Consequently, we deduce that

zB
′

oez∆0Ci(x)e
−z∆0z−B′

o = formal power series in
1

z
. (4.24)

For a fixed x ∈ X, and for j 6= k, the sector V contains rays ℓ of points z along which
Re(z(fj(x) − fk(x))) > 0. We deduce that the (j, k)-entry of Ci(x) vanishes, otherwise we
would have a divergence, for |z| → ∞ along the rays ℓ, on the l.h.s. of (4.24). So the matrix
Ci(x) is diagonal, and we have

Ci(x) = zB
′

oez∆0Ci(x)e
−z∆0z−B′

o

= F (z, x)−1 (∂iF (z, x) + z[F (z, x), ∂i∆0(x)]− [F1(x), ∂i∆0(x)]F (z, x))

= z(∂i∆0 − ∂i∆0) + (F1 ∂i∆0 − ∂i∆0 F1 − [F1, ∂i∆0]) +O

(
1

z

)
= O

(
1

z

)
.

This shows that Ci(x) = 0 for any i = 1, . . . , d. Hence, (4.23) hold true. This completes the
proof. �

The following result further clarifies the relation between the classes Ifs(∇
o) and I

gen
d (∇o).

Theorem 4.25. Let ∇o be a connection with matrix (4.5). Assume one of the following
assumptions hold:

• The pole part Ao is an element of Mreg ∩Mdiag;
• The pole part Ao is an element of Mdiag and the Property PNR holds.

Then we have ∅ 6= I
gen
d (∇o) ( Ifs(∇

o).
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Proof. Let us first assume that Ao ∈ Mdiag ∩Mreg. We have I
gen
d (∇o) ⊆ Ifs(∇

o), by point
(3) of Theorem 4.24. Consider the universal integrable deformation (∇JMUM,Cn,D(uo),uo)
of ∇o, whose existence is established by Malgrange’s and Jimbo–Miwa–Ueno’s Theorems 4.7
and 4.10. Its germ is an element of Igen

d (∇o). Moreover, if Ωo(z) is the matrix of connection
1-forms defining ∇o as in (4.5), then the matrix Ω(z, s) := Ωo(z) + d(zs · Idn), with s ∈ C,
defines an element of Ifs(∇

o) \ I
gen
d (∇o). This proves the statement in the case Ao is in

Mreg ∩Mdiag.

Let us now assume that A ∈ Mdiag, and that the Property PNR holds. Consider the inte-
grable deformation (∇Sab,Cn,D(uo),uo) of ∇o, whose existence is established by Sabbah’s
Theorem 4.11. It defines an element of Ifs(∇

o) ∩ I
gen
d (∇o). This proves that Igen

d (∇o) 6= ∅.

Assume that uao = ubo, with a 6= b, and consider the hyperplane ∆ab := {ua = ub} of Cn.
Denote by ι : ∆ab ∩ D(uo) → D(uo) the natural inclusion map. The germ of the integrable
deformation (ι∗∇Sab, ι∗Cn,∆ab ∩D(uo),uo) defines an element of Ifs(∇

o) \ Igen
d (∇o). Hence,

we have Ifs(∇
o) \ Igen

d (∇o) 6= ∅.

It remains to show that I
gen
d (∇o) ⊆ Ifs(∇

o). Consider a connection ∇o with pole part
Ao ∈ Mdiag, and assume that Property PNR holds. Let (∇, E,X, xo) ∈ I

gen
d (∇o) be defined

by a matrix Ω̂(z, x) as in (4.15), for a suitable triple of holomorphic matrices (∆0,B
′
o, L)

defined on an open neighborhood U of xo. Without loss of generality, by the Property PNR
we may assume that the constant matrix B′

o = diag(b1, . . . , bn) itself is such that

bi − bj 6∈ Z \ {0} whenever fi(xo) = fj(xo), for some i 6= j.

One can always recover this condition up to a gauge equivalence Ω̂ 7→ T−1Ω̂T by a constant
matrix T .

We need to show the existence of a sequence of holomorphic matrices Fk : U → M(n,C),
with k > 1, such that

F−1Ω̂F + F−1dF = −d (z∆0(x))−B
′
o

dz

z
, F := Idn +

∞∑

k=1

Fkz
−k.

As in the proof of point (3) of Theorem 4.24, the functions Fk’s can be found by iteratively
solving the equations

[∆0, Fk+1] + [B′
o, Fk] + [L,∆0]Fk + kFk = 0, k > 0, F0 = Idn. (4.25)

The procedure is standard. The matrices Fk(x) can be computed, entry by entry, in terms
of the entries of Fh(x) with h < k, for any x ∈ U . At each x ∈ U , the procedure works case
by case, according weather fi(x) 6= fj(x) or fi(x) = fj(x):

• if fi(x) 6= fj(x), with i 6= j, then

Fk+1(x)ij =
1

fj(x)− fi(x)
([B′

o, Fk(x)] + [L(x),∆0(x)]Fk(x) + kFk(x))ij , k > 0; (4.26)

• if fi(x) = fj(x), with i 6= j, then

Fk+1(x)ij = −
1

bi − bj + k + 1

∑

ℓ

(fℓ(x)− fi(x))L(x)iℓFk+1(x)ℓj , k > 0; (4.27)
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• the diagonal entries are given by

Fk+1(x)ii = −
1

k + 1

∑

ℓ 6=i

B(x)iℓ(Fk+1)ℓi, k > 0. (4.28)

From this construction, it is clear that the Fk’s are holomorphic on U \ coal(∆0). Moreover,
on the complement U \

⋃
a,b{z : fa(x) = fb(x)}, the following identities hold: for any pair

(i, j), with i 6= j, we have

(dfj − dfi)(Fk+1)ij = ([F1, d∆0]Fk − dFk)ij . (4.29)

This follows from the argument used in the proof of point (3) of Theorem 4.24.

Notice that equation (4.25), specialized for k = 0, is trivially solved by the choice F ′′
1 = L.

In particular, F ′′
1 holomorphically extends on the whole open set U , including the coalescence

set coal(∆0). Moreover, equation (4.28) implies that F1 holomorphically extends to the whole
U .

We claim that the holomorphicity of F1 at a point xc ∈ coal(∆0) implies that all the
matrices Fk are holomorphic at xc. In order to prove this, we proceed by induction on k.
For k = 1, the claim is tautological. Assume that F1, . . . , Fk are holomorphic on X. If we
introduce local coordinates (x1, . . . , xd) on X, with d = dimX, by assumption there exists
h ∈ {1, . . . , d} such that ∂hfj − ∂hfi is not vanishing on U . Hence, we have

(Fk+1)ij =
1

∂hfj − ∂hfi
([F1, ∂h∆0]Fk − ∂hFk)ij ,

and the right-hand-side is holomorphic at xc. This shows that the off-diagonal entries of each
Fk’s are holomorphic at xc. The diagonal entries of Fk+1 are determined by the off-diagonal
ones, by equation (4.28), and they are holomorphic at xc. This completes the proof. �

Remark 4.26. Due to equations (4.26) and (4.27), the holomorphicity of F1 and F2 at
points of coal(∆0) is equivalent to the following condition on the holomorphic matrix L: for
any xc ∈ coal(∆0), such that fi(x) = fj(x) for some i 6= j, there exists a neighborhood U(xc)
where

(bj − bi − 1)Lij(x)−
∑

ℓ 6=i

(fℓ(x)− fi(x))Liℓ(x)Lℓj(x) = O (fi(x)− fj(x)) , x ∈ U(xc).

At this point of the presentation, it is not not obvious why such an estimate holds true.
We will give a direct justification of this fact in the subsequent sections, standing on a
deeper analysis of the generalized Darboux–Egoroff system of equations (4.17) and (4.18).
See Remark 4.32.

4.6. Generalized Darboux–Egoroff equations, and its initial value property. Con-
sider n holomorphic functions f1(x), . . . , fn(x) in d complex variables x = (x1, . . . , xd) ∈ Cd.
Let b1, . . . , bn ∈ C be arbitrary constants. In what follows we set ∂i =

∂
∂xi .
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The generalized Darboux–Egoroff system DEd,n((fi)
n
i=1; (bi)

n
i=1) is the following system of

PDE’s for n2 − n unknown functions (Fkh(x))
n
k,h=1, with k 6= h:

(∂jfh − ∂jfk)∂iFkh − (∂ifh − ∂ifk)∂jFkh =
n∑

ℓ=1

(∂ifℓ − ∂ifk)(∂jfh − ∂jfℓ)FkℓFℓh −
n∑

ℓ=1

(∂jfℓ − ∂jfk)(∂ifh − ∂ifℓ)FkℓFℓh, (4.30)

(fh − fk)∂iFkh = (bh − bk − 1)(∂ifh − ∂ifk)Fkh

+
n∑

ℓ=1

(∂ifℓ − ∂ifk)(fh − fℓ)FkℓFℓh −
n∑

ℓ=1

(fℓ − fk)(∂ifh − ∂ifℓ)FkℓFℓh, (4.31)

for any i, j = 1, . . . , d, and any k, h = 1, . . . , n, with k 6= h. Solutions F of the generalized
Darboux–Egoroff system can be arranged in a off-diagonal matrix in M(n,C). In matrix
notation, equations (4.30), (4.31) read

d[F, d∆0] = [F, d∆0] ∧ [F, d∆0], d[F,∆0] = [[F, d∆0],B
′
o + [F,∆0]] ,

where ∆0(x) = (f1(x), . . . , fn(x)), and B′
o = diag(b1, . . . , bn).

Remark 4.27. In the very special case d = n = 3, and fi(x
1, x2, x3) = xi, with i = 1, 2, 3,

the system of nonlinear PDEs (4.30) and (4.31) reduces to the generic Painlevé equation
PVIα,β,γ,δ. See [Lor14, Th. 4.1].

Set A :=M(n,C)[[(xi − xio)
d
i=1]].

Theorem 4.28. Let xo ∈ Cd, and assume that

• for any k, h = 1, . . . , n, with k 6= h, we have dxo
fk 6= dxo

fh,
• bh − bk /∈ Z∗ whenever fh(xo) = fk(xo).

If F1, F2 ∈ A are two formal power series solutions of the system DEd,n((fi)
n
i=1; (bi)

n
i=1) such

that F1(xo) = F2(xo), then F1 = F2.
In particular, given an initial condition Fo ∈M(n,C), with Fo = F ′′

o , there exists at most
one holomorphic solution F of DEd,n((fi)

n
i=1; (bi)

n
i=1) such that F (xo) = Fo.

Proof. We have to show that the derivatives ∂i1 . . . ∂iNFkh(xo) can be computed from the
only knowledge of the numbers Fkh(xo). We proceed by induction on N . Let us start with
the case N = 1.

Before proceeding with the proof, notice for any k, h = 1, . . . , n, with k 6= h, there exists
an index11 j0 ∈ {1, . . . , d} such that ∂j0fh(xo) 6= ∂j0fk(xo), by assumption (1).

Step 1. Let a ∈ {1, . . . , d} be such that ∂afh(xo) = ∂afk(xo). Consider the equation (4.30)
with specialization of indices (i, j) = (a, j0). By evaluation at x = xo, we can compute the
number ∂aFkh(xo).

Step 2. Assume that fk(xo) 6= fh(xo). Then, for any a ∈ {1, . . . , d}, we can compute all
the number ∂aFkh(xo) from equation (4.31), with specialzation of index i = a, by evaluation
at x = xo.

11Clearly j0 depends on (k, h), but we omit the dependence for brevity of notation.
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Step 3. Assume that fk(xo) = fh(xo). Let a ∈ {1, . . . , d} be such that ∂afk(xo) 6=
∂afh(xo). Consider equation (4.31), with specialization of index i = a, and compute the
∂j0-derivative of both sides of the equation: we obtain

(∂j0fh − ∂j0fk)∂aFkh + (fh − fk)∂
2
aj0
Fkh =

(bh − bk − 1)(∂2aj0fh − ∂2aj0fk)Fkh + (bh − bk − 1)(∂afh − ∂afk)∂j0Fkh

+ ∂j0

[
n∑

ℓ=1

(∂afℓ − ∂afk)(fh − fℓ)FkℓFℓh −
n∑

ℓ=1

(fℓ − fk)(∂afh − ∂afℓ)FkℓFℓh

]
, (4.32)

and the last summand can be further expanded by using Leibnitz rule. By evaluating (4.32)
at x = xo, we obtain an identity of the type

(∂j0fh(xo)− ∂j0fk(xo))∂aFkh(xo)

− (bh − bk − 1)(∂afh(xo)− ∂afk(xo))∂j0Fkh(xo) = X1, (4.33)

where X1 is an expression involving only

• the values at x = xo of fh, fk, and of their first and second partial derivatives,
• the values at x = xo of F , and of its first partial derivatives which can be computed

in Step 2.

Similarly, consider equation (4.30), with specialization of indices (i, j) = (a, j0). By evalua-
tion at x = xo, we obtain an identity of the type

(∂j0fh(xo)− ∂j0fk(xo))∂aFkh(xo)− (∂afh(xo)− ∂afk(xo))∂j0Fkh(xo) = X2, (4.34)

where X2 is an expression involving only

• the values at x = xo of first derivatives of fh, fk,
• the values at x = xo of Fkh.

Equations (4.33) and (4.34) define a linear system of equations
(
(∂j0fh(xo)− ∂j0fk(xo)) −(bh − bk − 1)(∂afh(xo)− ∂afk(xo))
(∂j0fh(xo)− ∂j0fk(xo)) −(∂afh(xo)− ∂afk(xo))

)(
∂aFkh(xo)
∂j0Fkh(xo)

)
=

(
X1

X2

)
.

Such a system admits a unique solution since

det

(
(∂j0fh(xo)− ∂j0fk(xo)) −(bh − bk − 1)(∂afh(xo)− ∂afk(xo))
(∂j0fh(xo)− ∂j0fk(xo)) −(∂afh(xo)− ∂afk(xo))

)
=

= (∂j0fh(xo)− ∂j0fk(xo))(∂afh(xo)− ∂afk(xo))(bh − bk − 2) 6= 0.

This proves that all the first derivatives ∂aFkh(xo) can be computed.

Inductive step. Assume to know all the N -th derivatives ∂i1 . . . ∂iNFkh(xo). We show
how to compute all the (N + 1)-th derivatives ∂i1 . . . ∂iN+1

Fkh(xo).

Step 1. Assume there exists an ℓ ∈ {1, . . . , N + 1} such that ∂iℓfh(xo) = ∂iℓfk(xo).
Without loss of generality, we can assume ℓ = N + 1. Consider equation (4.30), with
specialization of indices (i, j) = (iN+1, j0), and take the ∂i1 . . . ∂iN -derivative of both sides.
By evaluation at x = xo, we can compute the number ∂i1 . . . ∂iN+1

Fkh(xo) in terms of lower
order derivatives of Fkh at xo (hence previously computed).
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Step 2. Assume that fh(xo) 6= fk(xo). Consider equation (4.31), with specialization of
index i = iN+1, and take the ∂i1 . . . ∂iN -derivative of both sides. By evaluation at x = xo,
we can compute the number ∂i1 . . . ∂iN+1

Fkh(xo) in terms of lower order derivatives of Fkh at
xo (hence previously computed).

Step 3. Assume that fh(xo) = fk(xo), and that for any ℓ ∈ {1, . . . , N + 1} we have
∂iℓfh(xo) 6= ∂iℓfk(xo). Set

∂0̂ := ∂i1∂i2 . . . ∂iN+1, ∂ℓ̂ := ∂j0∂i1 . . . ∂iℓ−1
∂iℓ+1

. . . ∂iN+1
, ℓ = 1, . . . , N + 1.

For any ℓ ∈ {1, . . . , N + 1}, consider equation (4.30), with specialization of indices (i, j) =
(iℓ, j0). By taking the ∂i1 . . . ∂iℓ−1

∂iℓ+1
. . . ∂iN+1

-derivative of both sides, we obtain an identity
of the form

(∂j0fh − ∂j0fk)∂0̂Fkh − (∂iℓfh − ∂iℓfk)∂ℓ̂Fkh = Z1,ℓ, (4.35)

where Z1,ℓ is a polynomial expression in the p-th derivatives of (fh−fk), with 0 6 p 6 N+1,
and the q-th derivatives of F with 0 6 q 6 N .

Consider equation (4.31), with specialization of index i = iN+1. By taking the ∂
N̂+1

-
derivative of both sides we obtain an identity of the form

(fh − fk)∂
N+2
j0i1...iN+1

Fkh + (∂j0fh − ∂j0fk)∂0̂Fkh +
N∑

ℓ=1

(∂iℓfh − ∂iℓfk)∂ℓ̂Fkh

− (bh − bk − 1)(∂iN+1
fh − ∂iN+1

fk)∂N̂+1
Fkh = Z2, (4.36)

where Z2 is a polynomial expression in

• the p-th derivatives of fh − fk, with 0 6 p 6 N + 2,
• in the q-th derivatives of F , with 0 6 q 6 N + 1.

Moreover, by evaluating at x = xo both sides of (4.36), one can notice that:

• the first term in the left-hand-side of (4.36) (i.e. the one with the (N+2)-th derivative
of Fkh) cancels,

• the only (N +1)-th derivatives of F appearing in Z2(xo) are those computed in Step
2.

Hence, equations (4.35) evaluated at x = xo, for ℓ = 1, . . . , N + 1, and equations (4.36)
evaluated at x = xo, define a linear system of equations in the N + 2 unknowns ∂0̂Fkh(xo),
∂1̂Fkh(xo), . . . , ∂N̂+1

Fkh(xo):

W




∂0̂Fkh(xo)
∂1̂Fkh(xo)

...
∂N̂Fkh(xo)
∂
N̂+1

Fkh(xo)




=




Z1,1(xo)
Z1,2(xo)

...
Z1,N+1(xo)
Z2(xo)



,
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where the matrix W equals

W =




D0 −D1 0 0 . . . 0 0
D0 0 −D2 0 . . . 0 0
D0 0 0 −D3 . . . 0 0
...

...
...

...
. . .

...
...

D0 0 0 0 . . . −DN 0
D0 0 0 0 . . . 0 −DN+1

D0 D1 D2 D3 . . . DN −κDN+1




,

D0 := ∂j0fh(xo)− ∂j0fk(xo),

Dℓ := ∂iℓfh(xo)− ∂iℓfk(xo),

κ = bh − bk − 1.

We have

detW = (∂j0fh(xo)− ∂j0fk(xo))
N+1∏

ℓ=1

(∂iℓfh(xo)− ∂iℓfk(xo))(N + 1− bh + bk) 6= 0.

This proves that all the (N + 1)-th derivatives ∂i1 . . . ∂iN+1
Fkh(xo) can be computed. �

4.7. I-universal integrable deformations. Consider a meromorphic connection ∇o on a
vector bundle Eo → P1, with matrix of connection 1-forms

Ωo = −

(
Ao +

1

z
Bo

)
dz.

Assume that one of the following assumptions holds true:

(I) Ao ∈ Mdiag ∩Mreg;
(II) Ao ∈ Mdiag, and the Property PNR is satisfied.

Definition 4.29. Let I be a class of integrable deformations of ∇o. An integrable deforma-
tion (∇, E,X, xo) of ∇o is I-versal, if

• (∇, E,X, xo) is an element of I,
• any element (∇′, E ′, X ′, x′o) of I is induced by (∇, E,X, xo) via pull-back along a

base-change ϕ : (X ′, x′o) → (X, xo).

It is I-universal, if the germ at x′o of the base change ϕ is uniquely determined.

Remark 4.30. Given a integrable deformation ∇ of the connection ∇o, there always exist
classes I such that ∇ is I-versal. For example, ∇ is clearly {∇}-versal. This is not true for
universality, due to possible “internal symmetries” of the integrable deformations. Here is an
example. Let f : C → C be an arbitrary holomorphic function, and d1, d2 ∈ C. Consider the
matrices ∆0,B : C2 →M(2,C) and the 1-form ω : C2 → M(2,C)⊗ Ω1

C defined by

∆0(x) =

(
f(x21 + x22) 0

0 f(x21 + x22)

)
, B(x) =

(
d1 (d1 − d2)(x

2
1 + x22)

0 d2

)
,

ω(x) =

(
0 2
0 0

)
(x1dx1 + x2dx2).

The matrices

Ω̃o(z) = −

(
∆0(0) +

1

z
B(0)

)
dz, Ω̃(z, x) = −

(
∆0(x) +

1

z
B(x)

)
dz − z d∆0(x) + ω,
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define two connections ∇o and ∇, respectively. The connection ∇ is an integrable deforma-
tion of ∇o, at which it restricts at x = 0. The connection ∇ is not {∇}-universal: any linear

map l : C2 → C2, defined by a matrix in O(2,C), is such that l∗Ω̃ = Ω̃.

Let us denote12 by (∇JMUMS,Cn,D,uo) the integrable deformation of ∇o whose existence
is guaranteed by Theorems 4.8 and 4.10 (Case I), and Theorem 4.11 (Case II). Here D ⊆ Cn

denotes a sufficiently small polydisc centered at uo. Recall that ∇JMUMS has matrix of
connection 1-forms given by

Ω̂JMUMS(z,u) = −d (zΛ(u))− ([Γ(u),Λ(u)] + B′
o)

dz

z
− [Γ(u), dΛ(u)],

where Λ: Cn → M(n,C), is defined by Λ(u) = diag(u1, . . . , un), and where the matrix
B′
o = diag(b1, . . . , bn) is constant, and satisfying Property PNR-(⋆⋆) in Case II.

Theorem 4.31. Let I be a class of integrable deformations of the connection ∇o satisfying
conditions (I) or (II) above.

(1) An integrable deformation of ∇o is induced by (∇JMUMS,Cn,D,uo) only if it is of
fs-type.

(2) If the deformation (∇JMUMS,Cn,D,uo) is I-versal, then it is I-universal.
(3) There exists a unique maximal class IJMUMS of integrable deformations of ∇o such

that ∇JMUMS is IJMUMS-universal.
(4) In Case I, we have IJMUMS = I(∇o).
(5) In Case II, we have I

gen
d (∇o) ⊆ IJMUMS ⊆ Ifs(∇

o).

Proof. Point (1) follows from point (1) of Theorem 4.24, since ∇JMUMS ∈ Ifs(∇
o).

Assume that (∇, E,X, xo) ∈ Ifs(∇
o) is induced by (∇JMUMS,Cn,D,uo) via a holomorphic

map ϕ : (X, xo) → (Cn,uo), x 7→ (ϕ1(x), . . . , ϕn(x)). On the one hand, by Theorems 4.16,
4.19, and 4.24, the pole part of ∇ is locally holomorphically diagonalizable at xo, with
holomorphic diagonal form ∆0(x) = (f1(x), . . . , fn(x)). On the other hand, the connection

∇ has then matrix of connection 1-forms ϕ∗Ω̂JMUMS: in particular, its pole part has Jordan
diagonal form

(ϕ∗Λ)(x) = diag(ϕ1(x), . . . , ϕn(x)), x ∈ X.

Hence, the germ of the map ϕ at xo is uniquely determined: it is given by the spectrum map
σ : X → Cn, x 7→ (f1(x), . . . , fn(x)). This proves point (2).

The class A = {I ⊆ I(∇o) : ∇JMUMS is I-universal} is non-empty, since {∇JMUMS} ∈ A.
Consider the poset (A,⊆). By taking unions, it is easy to see that

(i) every chain in A has a maximal element,
(ii) and A is upward-directed (i.e. given I1, I2 ∈ A, there exists I3 ∈ A such that I1, I2 ⊆

I3).

By Zorn Lemma, A has a maximal element. It necessarily is unique, by (ii). This proves
point (3).

In Case I, the statement IJMUMS = I(∇o) is equivalent to the universality predicated in
Theorems 4.8 and 4.10. Hence (4) holds.

12Here the superscript “JMUMS” stands for Jimbo–Miwa–Ueno–Malgrange–Sabbah.
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The only non-tivial inculsion of point (5) is I
gen
d (∇o) ⊆ IJMUMS. Consider an integrable

deformation (∇, E,X, xo) ∈ I
gen
d (∇o). By Theorem 4.24, ∇ is of dv-type, and it has a matrix

of connection 1-forms

Ω̂(z, x) = −

(
∆0(x) +

1

z
(B′

o + [L(x),∆0])

)
dz − zd∆0(x)− [L(x), d∆0(x)],

where B′
o satisfies Property PNR-(⋆⋆), and (∆0, L) is a suitable pair of holomorphic matrices

defined in a neighborhood of xo. Consider spectrum map σ : (X, xo) → (Cn,uo) defined by
x 7→ (f1(x), . . . , fn(x)). Since σ∗Λ = ∆0, we have

Ω̂− σ∗Ω̂JMUMS = −[L− σ∗Γ,∆0]
dz

z
− [L− σ∗Γ, d∆0].

Moreover, since the restriction at xo of both Ω̂ and σ∗Ω̂JMUMS equals (4.6), we deduce that

L(xo)− (σ∗Γ)(xo) ∈ K [[−,∆0]; xo] ≡ ker[−, d∆0(xo)], that is L(xo) = (σ∗Γ)(xo).

Since both L and σ∗Γ solves the generalized Darboux–Egoroff equations (4.17), (4.18), we
conclude that L = σ∗Γ, by Theorem 4.28. This shows that ∇ = σ∗∇JMUMS. This completes
the proof. �

Remark 4.32. From the equality L = σ∗Γ, we are able to justify the estimate of Remark
4.26. Consider equation (4.12): by evaluating both sides at u(x) = (f1(x), . . . , fn(x)), we
obtain

(bj − bi − 1)Lij(x)−
∑

ℓ 6=i

(fℓ(x)− fi(x))Liℓ(x)Lℓj(x) = (fi(x)− fj(x)) · ∂jΓij |u(x)

= O (fi(x)− fj(x)) , (4.37)

as expected from the proof of Theorem 4.25.

The following result provides a further description of the class IJMUMS.

Proposition 4.33. Let ∇o satisfy condition (I) or (II). Consider an integrable deformation
(∇, E,X, xo) in Ifs(∇

o), with pole part ∆0(x) = (f1(x), . . . , fn(x)).

(1) The connection ∇ is formally gauge equivalent to the connection σ∗∇JMUMS, where
σ : X → Cn is the spectrum map x 7→ (f1(x), . . . , fn(x)). This means that there exist
holomorphic functions Φk : X →M(n,C), with Φ0(X) ⊆ GL(n,C), such that

Φ−1Ω̂Φ + Φ−1dΦ = σ∗Ω̂JMUMS, Φ(z, x) =
∑

k>0

Φk(x)z
−k.

Moreover, if Φ0(x) = Idn for any x ∈ X, such a formal gauge equivalence is unique.
(2) We have ∇ ∈ IJMUMS if and only if the formal gauge equivalence above is actually

convergent.

Proof. Both ∇ and σ∗∇JMUMS are formally simplifiable: they are formally equivalent to
the connection d − d (z∆0(x)) − B′

o
dz
z

, via unique formal gauge equivalences of the form
Idn + O(z−1). Point (1) follows.

If ∇ ∈ IJMUMS, then there exists an analytic gauge equivalence of the form T (z, x) =

Idn+
∑

k>1 Tk(x)z
−k such that T−1Ω̂T+T−1dT = σ∗Ω̂JMUMS. By uniqueness, we have T = Φ.

Conversely, if Φ is convergent, then ∇ and σ∗∇JMUMS are analytically gauge equivalent. �
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Appendix A.

A.1. Proof of Theorem 4.7. Consider a trivial vector bundle Eo on P1, equipped with a
meromoprhic connection ∇o, admitting (in a suitable basis of sections) a matrix of 1-forms
connection of the form (4.5) with Ao regular. Let (E,∇,xo) be an arbitrary integrable
deformation of (Eo,∇o), parametrized by a simply connected manifold X. By Theorem 4.5,
the deformation admits a matrix of connection 1-forms as in (4.2), whose coefficients are
subjected to the integrability equations (4.3).

Since Ao is regular, the matrix A(x) is regular for x is a sufficiently small neighborhood
U ⊆ X of xo. From the equation [A,C] = 0, we deduce that C(x) is a polynomial expression
of A(x) for x ∈ U . Hence, the equations C ∧ C = 0 are automatically satisfied for x ∈ U .

Since dC = 0, at least locally we have C = dK for some holomorphic matrix-valued
function K: up to adding a constant matrix, we can assume that K(xo) = 0. Consequently,
system (4.3) is equivalent to

A−K − [K,Bo] = const. = Ao, [A, dK] = 0.

These equations define a Pfaffian system for the matrix K only:

ω = [Ao +K + [K,Bo], dK] = 0. (A.1)

Given a solution K, the matrix A can be reconstructed by A = Ao +K + [K,Bo].

The argument above shows that there is a 1-1 correspondence between integrable defor-
mations of a connection (Eo,∇o) and germs of maps ϕ : (X, xo) → (M(n,C), 0) such that
ϕ∗ω = 0. The maps ϕ are the integral manifolds of the Pfaffian system (A.1) passing through
0 ∈ M(n,C).

Lemma A.1. If Ao is regular, then the Pfaffian system (A.1) is completely integrable on
M(n,C). The maximal integral solutions define a foliation: in a neighborhood of 0 ∈
M(n,C), the leaves are n-dimensional.

Proof. Let v1, v2 be two vector fields on M(n,C) defined in a neighborhood of the origin. We
have to show that if ω(vi) = 0 for i = 1, 2, then also dω(v1 ∧ v2) = 0. A simple computation
shows that dω = 2dK∧dK+2[dK∧dK,Bo]. By identifying v1, v2 with matrices in M(n,C),
the condition ω(vi) = 0 is equivalent to [A(x), vi] = 0, for i = 1, 2. For x ∈ U as above,
the matrix A(x) is regular, and the matrices v1, v2 are polynomials in A(x). In particular,
we have [v1, v2] = 0, so that 2[v1, v2] + 2[[v1, v2], Bo] = 0. This is exactly the condition
dω(v1, v2) = 0. Finally, notice that the dimension of the leaf passing through 0 equals the
dimension of the centralizer of Ao in M(n,C). This equals n, since Ao is regular. �

The germ of the universal deformation of (Eo,∇o) is given by the germ of the maximal
integral submanifold of the Pfaffian system (A.1) passing through 0. This completes the
proof of Theorem 4.7.

A.2. Versal deformations do not exist if Ao /∈ Mreg. Let n = 2, and introduce the
matrices

Ao =

(
0 0
0 0

)
, Bo =

(
c 0
0 0

)
. (A.2)
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Let ∇o be the connection on C2 → P1 with connection (4.5). Consider an integrable defor-
mation of ∇o defined by a matrix Ω(z,x) as in (4.2), where x is a parameter varying in a
polydisc D ⊆ Cm. The matrix

Ω′(z,x, s) := Ω(z,x) + d(zs Id2)

defines a new integrable deformation of ∇o, parametrized by points (x, s) ∈ D×C. If A(x) is
the pole part of Ω, consider the hypersurface L := {s = 1

2
TrA(x)} in D×C: the restriction

Ω′|P1×L is a deformation of ∇o with traceless pole part. This shows that, without loss of
generality, we may restrict to the study of integrable deformations with traceless pole part

A(x) =

(
α(x) β(x)
γ(x) −α(x)

)
.

As in the previous section, the integrability system (4.3) can be reduced to the following
system of equations in the pair (A,K), with dK = C:

[A, dK] = 0, A = K + [K,Bo], dK ∧ dK = 0. (A.3)

Assume that c 6= ±1, so that the operator

ν : M(2,C) →M(2,C), X 7→ X + [X,Bo],

is invertible, with inverse

ν−1 :

(
x11 x12
x21 x22

)
7→

(
x11

1
1−c

x12
1

1+c
x21 x22

)
.

The system (A.3) can be reduced to a system of differential equations in A only, since
K = ν−1(A). The equation [A, dK] = 0 becomes

(
0 −2β
2γ 0

)
dα +

(
−γ 2α
0 γ

)
dβ

1− c
+

(
β 0

−2α −β

)
dγ

1 + c
= 0,

which defines following the Pfaffian system on the space C3 of triples (α, β, γ):

ω1 = (1− c)β dα− α dβ = 0,

ω2 = (1 + c)γ dα− α dγ = 0, (A.4)

ω3 = (1 + c)γ dβ − (1− c)β dγ = 0.

This system can be written in a more compact way as

dα

α
=

dβ

(1− c)β
=

dγ

(1 + c)γ
.

The equation dK ∧ dK = 0 reduces to

dα ∧ dβ = dα ∧ dγ = dβ ∧ dγ = 0,

which are automatically satisfied if (A.4) holds true.
The discussion in the previous section shows that integrable deformations of ∇o, with

traceless pole part, define (and are defined by) germs of maps ϕ : (X,xo) → (C3, Ao) such
that ϕ∗ωi = 0 for i = 1, 2, 3, i.e. integral submanifolds of the Pfaffian system (A.4) passing
through (αo, βo, γo) = 0.
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If (αo, βo, γo) 6= 0, there exists a unique (one dimensional) maximal integral submanifold
of the Pfaffian system above passing through (αo, βo, γo):

α(t) = αoe
t, β(t) = βoe

(1−c)t, γ(t) = γoe
(1+c)t.

If (αo, βo, γo) = 0, on the other hand, one can find many integral curves passing through
(αo, βo, γo). For example:

α = t, β = γ = 0; α = γ = 0, β = t; α = β = 0, γ = t;

these lines are not contained in a surface, hence there is no versal deformation inducing all
of them.

Infinite families of solutions arise if c ∈ Q. Assume c = p
q

with (p, q) = 1, and q > 0:

• if c < −1 (i.e. p < −q) we have the infinite family

α = α0t
q, β = β0t

q−p, γ = 0, α0, β0 ∈ C;

• if −1 < c < 1 (i.e. −q < p < q) we also have another infinite family

α = α0t
q, β = β0t

q−p, γ = γ0t
p+q, α0, β0, γ0 ∈ C;

if moreover p+ q is even, then we also have the infinite family

α = 0, β = β0t
q−p

2 , γ = γ0t
p+q

2 , β0, γ0 ∈ C;

• if c > 1 (i.e. p > q) we have the infinite family

α = α0t
q, β = 0, γ = γ0t

p+q, α0, γ0 ∈ C.

For a complete classification of the solutions see the recent paper [Her21, Sec. 8].

A.3. Case of B′
o partially resonant. Let us now consider the case of the matrices Ao, Bo

as in (A.2) with c = 1. For such a pair of matrices the Property PNR cannot hold true. As
before, let ∇o be the connection on C2 → P1 with connection (4.5), and consider an arbitrary
(germ of) integrable deformation ∇ of ∇o, parametrized by (the germ of) a pointed manifold
(X,xo). Let the matrix Ω of 1-forms of ∇ to be

Ω(z,x) = −

(
A(x) +

1

z
Bo

)
dz − zC(x),

as in Theorem 4.5.

Proposition A.2. The matrix Ω is of one, and only one, of the following types:
Type I: There exist two holomorphic functions g,m : X → C, not identically equal, with
g(xo) = m(xo) = 0, and a complex modulus κ ∈ C such that

A =

(
g 0

2κ(m− g)2 m

)
, C =

(
dg 0

κ · d(m− g)2 dm

)
. (A.5)

Type II: There exist a holomorphic function g : X → C, with g(xo) = 0, such that

A =

(
g 0
0 g

)
, C =

(
dg 0
0 dg

)
. (A.6)
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Type III: There exist two holomorphic functions g, h : X → C, with h not identically zero,
and g(xo) = h(xo) = 0, such that

A(x) =

(
g 0
0 g

)
, C(x) =

(
dg dh
0 dg

)
. (A.7)

Proof. The integrability conditions (4.3) can be put in the form (A.3), but we cannot reduce
anymore the problem to a Pfaffian system for A(x), as we did in the previous section, since
c = 1. So, let

K(x) =

(
g(x) h(x)
ℓ(x) m(x)

)
,

for arbitrary functions g, h, ℓ,m : X → C all vanishing at xo, and let us consider the system
(A.3) in the variable K. The first equation of the system (A.3) is then equivalent to the set
of equations

ℓ dh = 0, (g −m)dh = 0, (m− g)dℓ− 2ℓ d(m− g) = 0. (A.8)

We may have two cases: (Case I) either h is identically zero on X, (Case II) or h(x) 6= 0 for
at least one x ∈ X.

In Case I, from (A.8) we deduce that ℓ = κ(m − g)2 for some κ ∈ C, and the remaining
equation dK ∧ dK = 0 is automatically satisfied. Consequently, the matrix of connection
1-forms is necessarily of the form (A.5) or (A.6). In case II, from (A.8) we deduce that ℓ = 0
and g = m, and the remaining equation dK ∧ dK = 0 is automatically satisfied. Hence, the
matrix Ω of connection 1-forms is of the form (A.7). �

Proposition A.3.

(1) All integrable deformations in Id(∇
o) are of Type I or II. Moreover, any element of

I
gen
d (∇o) is of Type I.

(2) Integrable deformations of Type I cannot induce deformations of Type III, and vice-
versa.

(3) Both deformations of Type I and III can induce deformations of Type II.
(4) Two deformations (∇[1], κ1), (∇

[2], κ2) of Type I cannot be induced by a same defor-
mation if κ1 6= κ2.

(5) Integrable deformations of Type I and fixed modulus κ are induced by a universal
deformation of such a type: it is the connection on C2 → P1 × C2 with matrix of
connection 1-forms

Ω[I]
κ (z,u) = −d (zΛ(u))− ([Fκ,Λ(u)] +Bo)

dz

z
− [Fκ, dΛ(u)],

where

Λ(u) = diag(u1, u2), Fκ =

(
0 0

−2κ 0

)
.

(6) Integrable deformations of Type II do not admit a versal deformation.
(7) Integrable deformations of Type III admit a versal (but not universal) deformation of

such a type: it is the connection on C2 → P1 ×C2 with matrix of connection 1-forms

Ω[III](z,u) = −

((
u1 0
0 u1

)
+

1

z
Bo

)
dz − z

(
du1 du2
0 du1

)
.



49

Proof. In all Types I, II, and III, the matrix A(x) is holomorphically diagonalizable: for
Type I, indeed, we have

M−1AM = diag(g(x), m(x)), M(x) =

(
1 0

2κ(g(x)−m(x)) 1

)
;

in Type II and III, the matrix A is already in diagonal form. However, the deformation part
C is diagonalizable only in Types I and II. In Type I we have M−1CM = diag(dg, dm).
Moreover, any element of Igen

d (∇o) necessarily is of Type I. This proves point (1).
All the remaining statements easily follow from the explicit equations (A.5), (A.6), and

(A.7). �

Points (1) and (4) of Proposition A.3 imply that there exist no I
gen
d (∇o)-versal integrable

deformations.

References

[Arn71] V. I. Arnol’d, On matrices depending on parameters, Uspekhi Mat. Nauk, 26:2(158) (1971), 101–
114; Russian Math. Surveys, 26:2 (1971), 29–43.

[Bal89] W. Balser, Meromorphic transformation to Birkhoff standard form in dimension three,
J. Fac. Sc. Univ. Tokyo 36 (1989), 233–246.

[Bal90] W. Balser, Analytic transformation to Birkhoff standard form in dimension three, Funk. Ekvac. 33
(1990), 59–67.

[Bau74] H. Baumgärtel, Analytic perturbation theory for linear operators depending on several complex
variables, Mat. Issled. 9, 1, 17–39 (1974) (Russian).

[Bau85] H. Baumgärtel, Analytic perturbation theory for matrices and operators, Birkhäuser, 1985.
[BB97] W. Balser, A.A. Bolibrukh, Transformation of reducible equations to Birkhoff standard form, Ulmer

Seminare (1997) 73–81.
[Bel16] P. Belmans, Segre symbols, unpublished note available at the webpage:

https://pbelmans.ncag.info/notes/segre.pdf.
[BHM98] R. Byers, C. He, and V. Mehrmann, Where is the nearest non-regular pencil?, Lin. Alg. Appl., 121

(1998), pp. 245–287.
[Bir09] G. D. Birkhoff, Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc. 10

(1909), p. 436–470.
[Bir13] G.D. Birkhoff, A theorem on matrices of analytic functions, Math. Ann. 74 (1913), 122–133.
[BJL79] W. Balser, W.B. Jurkat, and D.A. Lutz, Birkhoff invariants and Stokes multipliers for meromorphic

linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.
[BKL75] H. Bart, M.A. Kaashoek, D.C. Lay, Relative Inverses of Meromorphic Operator Functions and As-

sociated Holomorphic Projection Function, Math. Ann. 218 (1975): 199–210.
[Bol94a] A.A. Bolibruch, On analytic transformation to Birkhoff standard form, Proc. Steklov Inst. Math.

203 (1994), 29–35.
[Bol94b] A.A. Bolibruch, On analytic transformation to Birkhoff standard form, Russian

Acad. Sci. Dokl. Math. 49 (1994), 150–153.
[Cay55] A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d’une seule

indéterminée, J. Reine Angew. Math. 50 (1855), 313–317.
[CDG19] G. Cotti, B. Dubrovin, and D. Guzzetti, Isomonodromy deformations at an irregular singularity

with coalescing eigenvalues, Duke Math. J. 168 (2019), no. 6, 967–1108. doi:10.1215/00127094-
2018-0059.

[CDG20] G. Cotti, B. Dubrovin, and D. Guzzetti, Local moduli of semisimple Frobenius coalescent struc-
tures, Symmetry, Integrability and Geometry: Methods and Applications, 16: 040 (2020),
doi:10.3842/SIGMA.2020.040.



50 GIORDANO COTTI

[Cot21a] G. Cotti, Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of
WDVV-potentials, Lett. Math. Phys. 111, 99 (2021).

[Cot21b] G. Cotti, Riemann–Hilbert–Birkhoff inverse problem for semisimple flat F -manifolds, and conver-
gence of oriented associativity potentials, arXiv:2105.06329, 2021.

[CG17] G. Cotti and D. Guzzetti, Analytic Geometry of Semisimple Coalescent Frobenius Structures, Ran-
dom Matrices Theory Appl., Vol. 6 (2017), no. 4, 1740004, 36 pp.

[CG18] G. Cotti and D. Guzzetti, Results on the Extension of Isomonodromy Deformations with a Res-
onant Irregular Singularity, Random Matrices Theory Appl., Vol. 07 (2018), no. 4, 1840003, 27
pp.

[DE95] J.W. Demmel and A. Edelman, The dimension of matrices (matrix pencils) with given Jordan
(Kronecker) canonical forms, Linear Algebra and its Applications, 230 (1995), pp. 61–87.

[DH21] L. David, C. Hertling, Meromorphic connections over F -manifolds, in “Integrability, Quantization,
and Geometry. I. Integrable systems”, Proceedings of Symposia in Pure Mathematics, Vol. 103,
Editors S. Novikov, I. Krichever, O. Ogievetsky, S. Shlosman, Amer. Math. Soc., Providence, RI,
2021, 171–216, arXiv:1912.03331.

[dR54] G. de Rham, Sur la division de formes et de courants par une forme linéaire, Com-
ment. Math. Helv., 28 (1954), 346–352.

[EEK97] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory of matrices
and and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl., 18 (1997), pp.
653–692.

[EEK99] A. Edelman, E. Elmroth, and B. Kågström, A geometric approach to perturbation theory of matrices
and and matrix pencils. Part II: a stratification-enhanced staircase algorithm, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 667–699.

[EJK03] E. Elmroth, P. Johansson, and B. Kågström, Bounds for the distance between nearby Jordan and
Kronecker structures in a closure hierarchy, J. of Mathematical Sciences, 114 (2003), pp. 1765–
1779.

[FG02] K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, Springer, 2002.
[FMS21] C. Fevola, Y. Mandelshtam, B. Sturmfels, Pencils of Quadrics: Old and New, Le Matematiche, Vol.

LXXVI, Issue II, pp. 319–335 (2021).
[FR66] O. Forster, K.J. Ramspott, Okasche Paare von Garben nicht-abelscher Gruppen, Invent. Math. 1,

260–286 (1966).
[For03] F. Forstnerič, The Oka Principle for Multivalued Sections of Ramified Mappings, Forum Math.

15(2), 309–328 (2003).
[For17] F. Forstnerič, Stein Manifolds and Holomorphic Mappings, 2nd edn. Springer, New York (2017).
[Gan59] F.R. Gantmakher, The theory of matrices, Chelsea, New York 1959.
[GLR06] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applications, SIAM

(2006).
[GL09] I.C. Gohberg, J. Leiterer, Holomorphic Operator Functions of One Variable and Applications,

Birkhäuser, Basel (2009).
[Gur88] R.M. Guralnick, Similarity of holomorphic matrices, Linear Algebra Appl. 99, 85–96 (1988).
[Guz18] D. Guzzetti, Notes on Non-Generic Isomonodromy Deformations, SIGMA 14 (2018), 087, 34 pages.
[Her21] C. Hertling, Rank 2 Bundles with Meromorphic Connections with Poles of Poincaré Rank 1,

SIGMA 17 (2021), 082, 73 pages
[HP94a] W. Hodge, D. Pedoe, Methods of Algebraic Geometry. Vol. I. (Cambridge Mathematical Library).

Cambridge: Cambridge University Press. (1994). doi:10.1017/CBO9780511623875.
[HP94b] W. Hodge, D. Pedoe, Methods of Algebraic Geometry. Vol. II. (Cambridge Mathematical Library).

Cambridge: Cambridge University Press. (1994). doi:10.1017/CBO9780511623899.
[HR18] G. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London

Mathematical Society, Second Series, 17, 75–115, (1918).
[HS66] P.-F. Hsieh and Y. Sibuya, Note on regular perturbations of linear ordinary differential equations

at irregular singular points, Funkcial. Ekvac. 8 (1966), 99–108.
[Jac75] N. Jacobson, Lectures in Abstract Algebra II. Linear Algebra, Springer, New York (1975).



51

[Jan88] R. Janz, Holomorphic Families of Subspaces of a Banach Space, in: Arsene G. (eds) Special Classes
of Linear Operators and Other Topics. Operator Theory: Advances and Applications, vol 28.
Birkhäuser, Basel (1988).

[JMU81] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformations of linear ordinary differen-
tial equations with rational coefficients I, Physica 2D (1981), p. 306–352.

[JLP76] W.B. Jurkat, D.A. Lutz, and A. Peyerimhoff, Birkhoff invariants and effective calculations for
meromorphic linear differential equations; Part I, J. Math. Anal. Appl. 53 (1976), 438–470.

[Kab76] W. Kaballo, Projektoren und relative Inversion holomorpher Semi-Fredholmfunktionen, Math.
Ann., 219 (1976), pp. 85–96.

[Kab12] W. Kaballo, Meromorphic generalized inverses of operator functions, Indagationes Mathematicae,
Volume 23, Issue 4, Pages 970–994 (2012).

[Kan79] R. Kaneiwa, An asymptotic formula for Cayley’s double partition function p(2;n), Tokyo J. Math.
2(1), 137–158 (1979).

[Kan80] R. Kaneiwa, Errata for “An asymptotic formula for Cayley’s double partition function p(2;n)”,
Tokyo J. Math. 3(2), 461–461 (1980).

[Lei17] J. Leiterer, On the Jordan structure of holomorphic matrices, ArXiv e-prints (2017):
arXiv:1703.09535.

[Lei20] J. Leiterer, On the Similarity of Holomorphic Matrices, J. Geom. Anal. 30, 2731–2757 (2020).
ArXiv e-prints (2017): arXiv:1703.09530.

[Lor14] P. Lorenzoni, Darboux–Egorov system, bi-flat F -manifolds and Painlevé VI, IMRN Vol. 2014, No.
12, pp. 3279–3302.

[Mal83a] B. Malgrange, Déformations de systèmes différentiels et microdifférentiels. Séminaire E.N.S. Math-
ématique et Physique (L. Boutet de Monvel, A. Douady & J.-L. Verdier, eds.), Progress in Math.,
vol. 37, Birkhäuser, Basel, Boston, 1983, p. 351–379.

[Mal83b] B. Malgrange, Sur les déformations isomonodromiques, II. Séminaire E.N.S. Mathématique et
Physique (L. Boutet de Monvel, A. Douady & J.-L. Verdier, eds.), Progress in Math., vol. 37,
Birkhäuser, Basel, Boston, 1983, p. 427–438.

[Mal86] B. Malgrange, Deformations of differential systems, II. J. Ramanujan Math. Soc. 1 (1986), p.
3–15.

[Mas59] P. Masani, On a result of G.D. Birkhoff on linear differential systems, Proc. Amer. Math. Soc. 10
(1959), 696–698.

[NY04] D. Novikov, S. Yakovenko, Lectures on meromorphic flat connections, In book: Normal forms, bi-
furcations and finiteness problems in differential equations (pp.387-430), Publisher: Kluwer Acad.
Publ, June 2004, DOI:10.1007/978-94-007-1025-2_11.

[Pet99] V.M. Petrogradsky, Growth of finitely generated polynilpotent Lie algebras and groups, generalized
partitions, and functions analytic in the unit circle, Internat. J. Algebra Comput. 9 (2) (1999) 179–
212.

[Pet00] V.M. Petrogradsky, On growth of Lie algebras, generalized partitions, and analytic functions, Dis-
crete Mathematics, Vol. 217:1–3 (2000), 337–351.

[Sab98] C. Sabbah, Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings,
Expositiones Mathematicae 16 (1998), 1–58.

[Sab07] C. Sabbah, Isomonodromic deformations and Frobenius manifolds, Universitext, Springer & EDP
Sciences (2007) (in French: 2002)

[Sab21] C. Sabbah, Integrable deformations and degenerations of some irregular singularities, Publ. RIMS
Kyoto Univ., 57 (2021), no. 3–4, to appear, arXiv:1711.08514v3, 35 pages.

[Seg83] C. Segre, Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni, Mem.
R. Acc. Scienze Torino, Vol. 36 (1883), p. 3–86. In: Corrado Segre, Opere, a cura della Unione
Matematica Italiana, Volume III, Edizione Cremonese, Roma, 1961, p. 25–126.

[Seg12] C. Segre, Mehrdimensionale Räume, Enzyklopädie der mathematischen Wissenschaften (1912).
[Shu70] M.A. Shubin, Holomorphic families of subspaces of a Banach space, Integral Equations Operator

Theory, 2 (1979), pp. 407–420 Translated from Mat. Issled. 5 (1970) 153–165 (in Russian)



52 GIORDANO COTTI

[Sib62] Y. Sibuya, Simplification of a system of linear ordinary differential equations about a singular
point, Funkcial. Ekvac. 4 (1962), 29–56.

[Sib90] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Contin-
uation, Translations of Mathematical Monographs, vol. 82, American Math. Society, Providence,
RI, 1990, (Japanese edition: 1976).

[Spa65] K. Spallek, Differezierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161,
143–162 (1965).

[Spa67] K. Spallek, Über Singularitäten analytischer Mengen, Math. Ann. 172, 249–268 (1967).
[Syl51] J.J. Sylvester, An enumeration of the contacts of lines and surfaces of the second order, Phil. Mag.

1:2 (1851), 119–140.
[Thi78] Ph.G.A. Thijsse, Decomposition theorems for finite meromorphic operator functions, Thesis, Am-

sterdam, 1978.
[Thi85] Ph.G.A. Thijsse, Global holomorphic similarity to a Jordan form, Results Math. 8, 78–87 (1985).
[Tur63] H. Turrittin, Reduction of ordinary differential equations to the Birkhoff canonical form,

Trans. Amer. Math. Soc. 107 (1963), p. 485–507.
[Was62] W. Wasow, On Holomorphically Similar Matrices, J. Math. Anal. Appl. 4, 202–206 (1962).
[Was65] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Math-

ematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-LondonSydney,
1965.

[Was85] W. Wasow, Linear turning point theory, Springer-Verlag New York (1985).


	1. Introduction
	2. Bundles of matrices
	2.1. Double partitions
	2.2. Bundles of matrices
	2.3. Number of bundles
	2.4. Bundles as fibered spaces
	2.5. Stratification of bundles
	2.6. Conjugate bundles, and sets Mreg, Mdiag

	3. On the similarity and the Jordan forms of holomorphic matrices
	3.1. Global and local holomorphic similarity
	3.2. Three criteria for local holomorphic similarity
	3.3. Holomorphically Jordanizable matrices 
	3.4. Coalescing points
	3.5. The gap topology
	3.6. Holomorphic families of subspaces
	3.7. A generalization of a theorem of Thijsse and Wasow
	3.8. Holomorphic Jordanization and bundles of matrices

	4. Universality of integrable deformations of solutions of RHB problems
	4.1. Riemann–Hilbert–Birkhoff problems
	4.2. Families of Riemann–Hilbert–Birkhoff problems
	4.3. Universal integrable deformations: Malgrange's and Jimbo–Miwa–Ueno's theorems
	4.4. Integrable deformations of degenerate Birkhoff normal forms: Sabbah's theorem
	4.5. Integrable deformations of d/dv/fs-type
	4.6. Generalized Darboux–Egoroff equations, and its initial value property
	4.7. I-universal integrable deformations

	Appendix A. 
	A.1. Proof of Theorem 4.7
	A.2. Versal deformations do not exist if Ao-.25ex-.25ex-.25ex-.25exMreg
	A.3. Case of Bo' partially resonant

	References

